
推广搜技术
文章平均质量分 73
JackHCC
全栈知识分享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
不同类型模型的样本组织形式
在推荐系统中,样本流作为模型的基建至关重要,样本的组织形式通常与模型预估的目标的特点相关,包括PointWise、Parwise和Listwise的建模方式;一般主要是PointWise的模型居多,其次是Listwise的,Pairwise的模型相对较少。原创 2025-08-09 17:04:02 · 256 阅读 · 0 评论 -
推荐算法工程师的从业必备基础技术栈
推荐算法工程师作为AI算法工程师中诸多岗位中的一个,在互联网公司岗位数量普遍更多,尤其是在互联网大厂,推荐、广告和搜索场景的业务非常多,岗位也相对较多。传统的CV和NLP岗位在互联网公司主要是一些风控、打标签或者为推荐算法模型提供模态特征等工作,实际求职过程竞争也会更加激烈😭,岗位少但是求职者更多,人均顶会在手,更看重Paper的含金量。对个人的技术栈的全面性要求更高,但是对于模型的技术深度相比CV/NLP岗位来比,还是要浅薄一些,但是对个人的动手实践能力要求更高。原创 2025-08-08 22:26:35 · 309 阅读 · 0 评论 -
粗排/精排/混排在模型结构上的本质差异?
原创 2025-08-08 09:22:17 · 241 阅读 · 0 评论 -
深度学习调参技巧总结
原创 2025-08-08 09:03:01 · 387 阅读 · 0 评论 -
推荐算法电商业务常见术语大全
原创 2025-08-06 20:21:19 · 363 阅读 · 0 评论 -
推荐系统召回粗排的优化思路
召回作为推荐庞大候选底池中捞取候选的入口,一个完整的推荐系统都是由多路召回组成,甚至一些大场景的召回路数几十上百路,每一路召回最终曝光的独占比非常低。从召回迭代初期来看,一般新增合理的召回通路都能带来新线上指标的提升。但随着召回通路不断增加,一是线上召回的机器资源压力激增,二是受边际递减的规律,新增召回的收益会越来越小,最终导致新增召回的 ROI(投入产出比)非常低。因此,召回的迭代路线主要包括新增合理的召回通路,在已有的召回通路上优化迭代,在多路召回每路的权重。新增合理的召回通路。原创 2025-08-06 20:19:52 · 234 阅读 · 0 评论 -
【工业级成熟设计方案】一个完整的推荐系统的架构设计
从算法侧的视角来看,我们通常看到的是推荐系统召回、粗排、精排和混排(重排)这样的漏斗链路,对应着一次推荐的请求下,从千百万的候选侧底池中一次“捞出”用户最感兴趣的几个候选。候选根据业务场景的指代有所不同,在广告业务下是广告计划,在电商业务下是商品,在推荐业务下是短视频等。原创 2025-08-05 09:25:44 · 537 阅读 · 0 评论 -
广告算法必备的基本术语汇总大全
这篇摘要概括了数字广告投放的核心概念和关键指标。主要内容包括:广告计费方式(CPM、CPC等)、投放流程(展示、点击、转化)、效果评估指标(CTR、CVR、ROI)、平台技术(DSP、DMP、RTB等)以及价值计算(广告主价值、eCPM)。同时解释了频控、流控等投放策略,区分了不同广告交易模式(PMP、RTB)。重点强调了广告主价值是平台合理收费的上限,指出其与cost的区别,并说明预算限制可能导致实际收费低于广告主价值。这些概念构成了数字广告投放的基础框架和评估体系。原创 2025-08-05 09:20:48 · 820 阅读 · 0 评论 -
Awesome Uplift Modeling【如何学习因果推断、因果机器学习和Uplift建模?All in here】
How to Apply Causal ML to Real Scene Modeling?How to learn Causal ML?Github项目地址:👉https://github.com/JackHCC/Awesome-Uplift-Model👈👉https://github.com/JackHCC/Awesome-Uplift-Model👈The most commonly used models for causal inference are Rubin Causal Model原创 2022-12-03 18:55:38 · 1597 阅读 · 0 评论 -
推荐系统,计算广告模型论文,代码与数据集汇总
更多细节参考项目:https://github.com/JackHCC/Rec-Modelshttps://github.com/JackHCC/Rec-Models📝 Summary of recommendation, advertising and search models.原创 2022-12-24 12:16:40 · 1530 阅读 · 2 评论 -
推荐&广告&搜索三种业务的区别
搜广推作为互联网公司几大核心的业务,三个大方向的业务有很多技术共同点,但是彼此又有很多差别,那么推荐、广告和搜索对于算法工程师来说到底有什么区别呢?原创 2025-08-04 21:28:03 · 498 阅读 · 0 评论