leetcode刷题 | O(1) 时间插入、删除和获取随机元素的容器和LRUCache类
文章目录
O(1) 时间插入、删除和获取随机元素的容器
题目要求
链接:380. O(1) 时间插入、删除和获取随机元素 - 力扣(LeetCode)
设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构:
- insert(val):当元素 val 不存在时返回 true ,并向集合中插入该项,否则返回 false 。
- remove(val):当元素 val 存在时返回 true ,并从集合中移除该项,否则返回 false 。
- getRandom:随机返回现有集合中的一项。每个元素应该有 相同的概率 被返回。
数据结构选择
题目要求实现插入、删除和随机访问的时间复杂度均为O(1)的容器。
为了实现在O(1)时间获取元素,可以采用数组,由于还需要插入和删除的操作所以需要使用可变长数组ArrayList;但是题目还要求插入和删除的时间都为O(1),可以实现的的数据结构为HashMap,HashMap插入和删除元素的时间复杂度均为O(1),由此可以得知该题目的数据结构为HashMap+ArrayList;
具体实现步骤
HashMap用来存储val和val在数组中的位置,ArrayList用来存储val值
HashMap - map
ArrayList - list
size 为数组的大小
插入操作:
- 首先判断val是否在map中,如果存在返回false;
- 如果不存在,在list末尾添加val;
- 把val和其下标size存入到map中;
- size++,更新大小
删除操作:
- 首先判断val是否在map中,如果不存在返回false;
- 如果存在,首先从map中获取val的index;
- 将最后一个元素last移动到index位置,并将map中的last下标更新为index,这么做的时间复杂度为O(1),并且可以保证数组的下标是连续的
- 将list最后一个元素删除,在map中删除val
- size --;
随机获取:
新建一个Random类,直接返回list.get(rand.nextInt(size));
class RandomizedSet {
HashMap<Integer,Integer> map;
int size;
ArrayList<Integer> list;
Random rand = new Random();
/** Initialize your data structure here. */
public RandomizedSet() {
map = new HashMap();
list = new ArrayList();
size = 0;
}
public boolean insert(int val) {
if(map.containsKey(val)) return false;
map.put(val,size);
list.add(val);
size++;
return true;
}
public boolean remove(int val) {
if(!map.containsKey(val)) return false;
int index = map.get(val);
int last = list.get(size-1);
list.set(index,last);
map.put(last,index);
map.remove(val);
list.remove(size-1);
size --;
return true;
}
public int getRandom() {
return list.get(rand.nextInt(size));
}
}
LRUCache类
题目要求
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
- LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
- int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
- void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
数据结构选择
LRU算法是一种缓存淘汰策略,一般情况下缓存容量是有限的,如果缓存满了那么久要删除一些不常用的内容,LRU算法认为最近使用的数据是有用的数据,很久没有用的数据是无用的数据,在缓存不足的情况下应该删除。
题目要求get和put的时间复杂度均为O(1),根据上一题的经验可以得知HashMap可以实现插入和删除的时间复杂度均为O(1),但是其数据没有固定的顺序,这样无法直接找到哪些是有用的数据,哪些是无用的数据;链表具有固定的顺序但是插入和删除的时间复杂度不符合题意,所以可以结合一下作为本题的数据结构:HashMap+双向链表
链表采用双向链表的原因是,在题目中需要涉及到删除操作,需要得到删除元素的前驱节点,双向链表可以直接查找到前驱节点
具体实现步骤
可以自己创建一个双向链表类,可以直接用java提供的LinkedHashMap
class DLinkedNode{
int key;
int val;
DLinkedNode next;
DLinkedNode prev;
public DLinkedNode(){}
public DLinkedNode(int key,int val){
this.val = val;
this.key = key;
}
}
在实现LRU之前,需要实现关于链表的几个方法:
- addToHead 添加到头节点
- removeNode 删除该节点
- moveToHead 将该节点移动到头节点
- removeTail 删除尾节点
public void addtoHead(DLinkedNode temp){
temp.next = head.next;
head.next.prev = temp;
head.next = temp;
temp.prev = head;
}
public void removeNode(DLinkedNode node){
node.prev.next = node.next;
node.next.prev = node.prev;
}
public void moveoHead(DLinkedNode node){
removeNode(node);
addtoHead(node);
}
public DLinkedNode removeTail(){
tail.prev.next = head;
head.prev = tail.prev;
tail= tail.prev;
return tail;
}
接下来进行初始化:
private DLinkedNode head,tail;
private int size;
private int capacity;
private HashMap<Integer,DLinkedNode> map = new HashMap();;
public LRUCache(int capacity) {
this.size = 0;
this.capacity = capacity;
head = new DLinkedNode();
tail = new DLinkedNode();
head.next = tail;
tail.prev = head;
}
设定一个伪头节点和伪尾节点来作为维护链表
get操作:
- 首先判断map中是否包含key,如果不存在返回-1
- 存在,通过map找到key所对应的node节点
- 并将该node节点移动到链表的头部
- 返回node.val
put操作:
- 判断map中是否包含key,如果不存在,创建一个新的节点,并将该节点添加到链表的头部,map中存储该节点的key和node
- 然后判断链表容量是否超过size大小,超过则将链表的尾节点删除,并删除map中对应的元素
- 如果存在,将node.val进行更新,并将node移动到头部
class LRUCache {
class DLinkedNode{
int key;
int val;
DLinkedNode next;
DLinkedNode prev;
public DLinkedNode(){}
public DLinkedNode(int key,int val){
this.val = val;
this.key = key;
}
}
private DLinkedNode head,tail;
private int size;
private int capacity;
private HashMap<Integer,DLinkedNode> map = new HashMap();;
public LRUCache(int capacity) {
this.size = 0;
this.capacity = capacity;
head = new DLinkedNode();
tail = new DLinkedNode();
head.next = tail;
tail.prev = head;
}
public int get(int key) {
DLinkedNode temp = map.get(key);
if(temp == null) return -1;
movetoHead(temp);
return temp.val;
}
public void put(int key, int value) {
DLinkedNode node = map.get(key);
if(node == null){
node = new DLinkedNode(key,value);
addtoHead(node);
map.put(key,node);
size ++;
if(capacity < size){
DLinkedNode tail = removeTail();
map.remove(tail.key);
size --;
}
}else{
node.val = value;
movetoHead(node);
}
}
public void addtoHead(DLinkedNode temp){
temp.next = head.next;
head.next.prev = temp;
head.next = temp;
temp.prev = head;
}
public void removeNode(DLinkedNode node){
node.prev.next = node.next;
node.next.prev = node.prev;
}
public void movetoHead(DLinkedNode node){
removeNode(node);
addtoHead(node);
}
public DLinkedNode removeTail(){
tail.prev.next = head;
head.prev = tail.prev;
tail= tail.prev;
return tail;
}
}
import java.util.LinkedHashMap;
public class LRUCache {
int capacity;
LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();
public LRUCache(int capacity) {
this.capacity = capacity;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
moeToHead(key);
return cache.get(key);
}
public void put(int key, int val) {
if (cache.containsKey(key)) {
cache.put(key, val);
moeToHead(key);
return;
}
if (cache.size() >= this.capacity) {
int oldestKey = cache.keySet().iterator().next();
cache.remove(oldestKey);
}
cache.put(key, val);
}
private void moeToHead(int key) {
int val = cache.get(key);
cache.remove(key);
cache.put(key, val);
}
}