conda安装GPU版pytorch

本文提供了一种详细的步骤来解决使用conda安装GPU版本PyTorch遇到的问题,特别是当conda官方源中缺少对应的cuDAtoolkit版本时。通过创建新环境、手动安装cuDAtoolkit和cuDNN,再从PyTorch官网下载合适的wheel文件并使用pip进行安装,最终实现了GPU版本PyTorch的成功部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

conda安装GPU版pytorch

问题

使用官网给的命令语句安装GPU版本pytorch,输入torch.cuda.is_available()来查询安装结果,出现False。经查询发现问题在conda官方源里没有cudatoolkit对应版本的pytorch,于是conda自动安装了cpu版本的pytorch。

conda list #查询安装的package

可以看到安装的都是cpu版本的
在这里插入图片描述

解决方案

该方案参考文章:https://www.pudn.com/news/625d6d45be9ad24cfa806af3.html
1.创建新环境

conda create -n gpu python=3.7

2.激活环境

activate gpu

3.安装cudatoolkit

conda install cudatoolkit=10.1 #对应计算机gpu版本

4.安装cudnn,如果不指定版本,在安装CUDA之后,会自动匹配对应版本的cudnn安装

conda install cudnn

5.官网下载torch torchvision torchaudio 相应版本轮子

https://download.pytorch.org/whl/cu101

6.转到轮子保存的本地目录,先安装torch,后安装另外两个

pip install 完整轮子文件名(包括文件类型)

PS:没有合适博主电脑版本的torchaudio,先不下载了
7.输入测试代码,成功
在这里插入图片描述

### 安装GPUPyTorchConda教程 为了安装适用于GPUPyTorch本,创建一个专门用于此目的的新虚拟环境是有益的做法。这有助于管理依赖关系并防止不同项目之间的冲突。 #### 创建新的Conda环境 ```bash conda create -n pytorch-gpu python=3.9 ``` 激活新创建的环境: ```bash conda activate pytorch-gpu ``` #### 配置清华镜像源加速下载速度 由于官方通道可能较慢,可以配置清华大学开源软件镜像站来加快包获取的速度[^2]。 设置额外的渠道以利用更快的国内资源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` #### 安装CUDA支持的PyTorch 确保计算机已正确安装NVIDIA驱动程序以及所需的CUDA工具包本之后,在上述环境中执行如下命令完成带有CUDA支持的PyTorch安装: 对于最新的稳定(假设使用的是 CUDA 11.7),运行以下命令: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch ``` 如果需要其他特定本,则可以根据需求调整`pytorch`, `cuda toolkit`的具体标签参数。 通过这种方式能够有效地建立适合深度学习开发工作的Python工作区,并且充分利用图形处理器的能力提升训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值