题目描述
形如2p-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。
到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:从文件中输入P(1000<P<3100000),计算2p-1的位数和最后500位数字(用十进制高精度数表示)
输入
文件中只包含一个整数P(1000<P<3100000)
输出
第1行:十进制高精度数2p-1的位数。
第2-11行:十进制高精度数2p-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2p-1与P是否为素数。
样例输入
1279
样例输出
386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087
本来看的资料,发现写的好麻烦,还是自己搞一个简单的好点
代码如下:
一个快速幂和一个大整数乘法
#include<bits/stdc++.h>
using namespace std;
#define LEN 500
void Multiply(int *a, int *b);
int main(void) {
int i, p, Pow[LEN], Result[LEN];
scanf("%d", &p);
printf("%d\n", (int)(p * log10(2)) + 1);//求位数公式 (int)log10(n) + 1;
Pow[0] = 2;
Result[0] = 1;//初始化
for (i = 1; i < LEN; i++) {
Pow[i] = 0;
Result[i] = 0;
}
//计算2的p次方---快速幂
while (p > 0) {
if (p & 1)
Multiply(Result, Pow);
p >>= 1;
Multiply(Pow, Pow);
}
Result[0]--;
int coun = 0;
for (i = LEN - 1, coun = 1; i >= 0; i--, coun++) {
if (coun % 50 == 0) {
printf("%d\n", Result[i]);
coun = 0;
}
else
printf("%d", Result[i]);
}
return 0;
}
void Multiply(int *a, int *b) {
int c[LEN + 5] = { 0 };//可能会有501位,要进位,所以加一就行
for (int i = 0; i < LEN; i++) //因为相乘的话,第i位和第j位相乘积是在第 i+j位上,那么
for (int j = 0; j < LEN - i; j++) //i+j不能超过LEN 500
c[i + j] += a[i] * b[j];
for (int i = 0; i < LEN; i++) {
if (c[i] > 9) {
c[i + 1] += c[i] / 10;
c[i] %= 10;
}
}
memcpy(a, c, LEN * sizeof(int));
//函数原型为void *memcpy(void *destin, void *source, unsigned n);
//函数的功能是从源内存地址(source)的起始位置开始拷贝若干个字节到目标内存地址(destin)中
}