
Fastapi协程与异步最佳实践
文章平均质量分 77
Python 协程与异步编程是构建高性能应用的核心技术,尤其在 FastAPI 等框架中展现出强大优势。通过 `asyncio` 和 `await`,开发者可以高效处理网络请求、数据库操作、文件读写等 I/O 密集型任务。结合消息队列(如 Redis、RabbitMQ)与异步消费者,可实现分布式任务
m_merlon
我热爱编程和分享知识,致力于为广大编程爱好者提供有趣、实用的Python教程和技巧。在我的博客中,您可以找到各种关于Python的文章,涵盖了从基础语法到高级应用的各个方面。希望我的博客能帮助您更好地学习和掌握Python编程,让您在编程的世界里畅游无阻。期待与您共同进步!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Fastapi教程:使用 aioredis 连接池执行Redis 的高效异步操作
在高并发的 Web 应用中,Redis 作为缓存系统至关重要。使用连接池可以有效避免频繁创建和销毁 Redis 连接的性能瓶颈。本文介绍了如何在 FastAPI 中通过 `aioredis` 实现异步操作并使用连接池来优化 Redis 的访问。通过设置连接池的最小和最大连接数,可以高效管理 Redis 连接,提升应用性能,简化代码结构。这种方法特别适合需要频繁与 Redis 交互的场景,帮助构建高效、可扩展的 Web 应用。原创 2024-12-11 10:25:20 · 2091 阅读 · 0 评论 -
Fastapi教程:使用aioredis异步访问redis
本文详细介绍了如何在 FastAPI 中使用异步方式访问 Redis,包括 Redis 连接的创建、数据的增删查改、键过期、使用管道操作和事务管理等内容。通过使用aioredis库,结合 FastAPI 提供的异步支持,可以高效地处理缓存数据,提升系统性能。希望本文对你在项目中使用 Redis 提供了帮助。原创 2024-12-11 10:16:08 · 1670 阅读 · 0 评论 -
Fastapi教程:使用异步sqlalchemy操作mysql
本文详细讲解了如何在 FastAPI 中使用 SQLAlchemy ORM 来完成 MySQL 数据库的增删查改操作,利用异步的数据库引擎和会话机制,让应用在高并发场景下保持高效。通过 SQLAlchemy ORM,我们不仅可以简化数据库操作,还能提高代码的可读性和维护性。在实际开发中,采用 ORM 方式进行数据访问,是开发者处理数据库交互的常见做法。原创 2024-12-11 10:03:19 · 3300 阅读 · 0 评论 -
Fastapi教程:使用Pydantic定义数据模型
Pydantic 是 FastAPI 的核心库,用于数据验证和序列化。通过基于 Python 类型注解的模型定义,Pydantic 可以自动验证请求数据的类型和格式,并提供详细的错误信息。它支持字段约束、嵌套模型、数据转换等功能,简化了数据处理流程。结合 FastAPI,Pydantic 帮助开发者高效构建高性能、类型安全的 API,确保数据一致性和代码的可维护性。原创 2024-12-11 09:36:40 · 1522 阅读 · 0 评论 -
Fastapi教程:快速入门用 FastAPI 构建你的第一个 API
使用 FastAPI 创建基本 API 服务。运行和测试同步与异步 API。了解 FastAPI 提供的自动文档和异步支持。原创 2024-12-11 09:25:03 · 1851 阅读 · 0 评论 -
Python协程:asyncio基本用法
在 Python 中,协程是一个可以暂停执行并在以后恢复执行的函数。你可以通过async def来定义一个协程函数,而await用于暂停协程的执行,直到某个异步操作完成。异步编程的核心优势是能够并发地执行 I/O 密集型任务,而不需要阻塞主线程。例如,进行大量的文件读写或网络请求时,异步编程能够帮助你高效地利用系统资源,提高程序的响应速度。done(已完成的任务)和pending(未完成的任务)。可以通过控制何时返回,支持以下选项::等待所有任务完成。:等待第一个任务完成。原创 2024-11-15 16:24:47 · 1998 阅读 · 0 评论 -
Python协程:asyncio同步原语
在 Python 的异步编程中,`asyncio` 提供多种同步原语,用于协程之间的协调与资源共享。本文聚焦于四种核心工具:`Lock` 用于互斥访问共享资源,`Event` 实现任务间的信号传递,`Condition` 协调任务在特定条件下运行,而 `Semaphore` 限制并发任务的数量。这些工具能帮助开发者高效解决竞争条件、优化任务调度,为异步应用提供强大的控制能力。原创 2024-12-03 09:55:40 · 777 阅读 · 0 评论 -
异步与并发基础:select、poll 与 epoll 的原理、区别与适用场景
`select`、`poll` 和 `epoll` 是三种常用的 I/O 多路复用机制,用于在一个线程中同时处理多个文件描述符(如网络连接)。`select` 是最早的实现,性能在高并发情况下有限,`poll` 改进了这一点,但依然存在性能瓶颈。`epoll` 是 Linux 专有的高效解决方案,支持事件驱动模型,特别适合高并发网络应用。选择哪种机制依赖于应用的需求和操作系统平台。原创 2024-11-27 09:52:57 · 1314 阅读 · 0 评论 -
异步与并发基础:I/O 多路复用原理与应用
I/O 多路复用是一种高效的输入/输出管理技术,允许单个线程或进程同时处理多个 I/O 操作。它通过使用 `select`、`poll`、`epoll` 等系统调用,避免在等待 I/O 操作时阻塞进程,从而提高并发处理能力。I/O 多路复用常用于高并发的网络服务、实时数据处理和资源受限环境中。其主要优势在于高效地利用系统资源,减少线程/进程的创建和上下文切换,适用于 Web 服务器、聊天系统等场景。原创 2024-11-27 09:51:50 · 1132 阅读 · 0 评论 -
异步与并发基础:python迭代器和生成器
迭代器生成器原创 2022-12-01 11:34:50 · 227 阅读 · 0 评论 -
异步与并发基础:Python 进程、线程、协程简介与对比
本文将深入探讨 Python 中的进程、线程和协程,分析它们之间的区别与联系。我们将介绍每种并发模型的工作原理、优缺点及适用场景,帮助开发者在不同场景下做出合适的并发选择。通过具体示例,本文还将阐述如何在 Python 中高效地使用进程、线程和协程进行并发编程,以及使用时需要注意的事项。原创 2024-11-26 10:15:21 · 621 阅读 · 0 评论 -
异步与并发基础:同步、异步、并发、并行简介
同步、异步、并发和并行是描述任务执行方式的不同概念。**同步**任务按顺序执行,每个任务需等待前一个完成;**异步**则允许任务在等待时执行其他任务,提升效率。**并发**是指程序可以管理多个任务的执行,任务之间交替进行;**并行**则是在多个处理器核心上同时执行任务,充分利用计算资源。理解这些概念帮助选择合适的编程模型,提高程序性能和响应速度。原创 2024-11-26 10:30:41 · 1102 阅读 · 0 评论 -
消息队列:celery在Windows上运行worker在执行任务时,获取不到运行状态
celery支持Prefork, Eventlet, gevent, threads/single threaded集中方式的并发,但在window上不支持Prefork,因此我在使用gevent或则eventlet的时候经常碰到worker在执行任务时,状态为offline,解决方法:将并发方式改为threads即可,代码如下:celery -A tasks.tasks worker -P eventlet # 上面的并发方式为单线程,有时会阻塞,导致不能获取worker状态,改为下面即可解决.原创 2022-04-20 17:06:39 · 1169 阅读 · 0 评论 -
消息队列:Celery - 配置文件总结
Setting nameReplace with说明CELERY_ACCEPT_CONTENTaccept_contentCELERY_ENABLE_UTCenable_utcCELERY_IMPORTSimportsCELERY_INCLUDEincludeCELERY_TIMEZONEtimezoneCELERYBEAT_MAX_LOOP_INTERVALbeat_max_loop_intervalCELERYBEAT_S...原创 2022-05-10 17:16:49 · 1457 阅读 · 1 评论 -
消息队列:celery启动worker正常启动,收不到任务
celerty自定义队列demo_queue,然后使用命令以下命令启动没问题celery -A tasks.tasks worker -P eventlet -Q queue_common -l debug使用下面方式启动收不到任务app.worker_main(argv=[ 'worker', '--loglevel=info', '--pool=threads', '--concurrency=100', '-Q d原创 2022-04-20 16:55:13 · 3435 阅读 · 0 评论 -
异步grpc客户端
当我们碰到io密集型场景中又有cpu密集型任务的时候,我们可以采用此种同步服务端+异步客户端的方案。例如,当我们使用fastapi提供对外服务时,不仅有普通的对数据库增删查改等io操作,还有大量的本地数据计算等cpu型任务,那么我们可以把cpu型任务使用gprc封装成服务端,同时提供异步grpc客户端给fastapi调用,这样一来,虽然cpu计算还是那么慢,但是fastapi本身由于不被cpu任务拖累,却可以接受更多的io操作。原创 2022-10-27 11:22:20 · 775 阅读 · 0 评论