- 博客(6)
- 收藏
- 关注
原创 AGC:Attributed Graph Clustering via Adaptive Graph Convolution
Adaptive:构造k阶图卷积,充当节点特征上的低通图滤波器,以获得平滑的特征表示,其中 k 可以使用簇内距离自适应地选择。 GCN的问题 GCN的每个卷积层都与投影层耦合,无法构造深层GCN。 一般使用2~3个GCN,即只能考虑2,3阶邻居,丢失了global信息。 固定模型忽略了真实数据的多样性。 模型 构造k阶图卷积,学习平滑的节点特征表示; 对学习到的节点特征进行谱聚类。 类内距离 类内距离不再减少时,说明阶数k不能再增加。 算法 ...
2022-03-22 20:30:33
253
原创 SpectralNet: Spectral Clustering using Deep Neural Networks
谱聚类 + 深度学习 文章:ICLR 2018 代码:tensorflow实现 算法 孪生网络学习特征间的相似度矩阵 根据谱聚类目标函数进行特征学习 在特征空间执行 K鄄means 来获得聚类分配
2022-03-22 12:50:14
897
原创 SDEC: Semi-supervised deep embedded clustering
半监督 + DEC,与DEC不同的是,对节点对实施限制,从而减小类内聚类,增加类间距离。 文章:文章链接 代码:代码的Keras实现 半监督聚类 聚类问题本是无监督问题,而半监督聚类算法的监督信息来自哪里呢?来自节点之间是否有连边。有的节点一定属于同一类,而有的节点一定不属于同一类。 第一篇半监督深度聚类文章:Deep transductive semi-supervised maximum margin clustering 模型 pretrain:SAE,每一层是降噪自编码器 initializati
2022-03-22 10:49:24
1046
原创 DCC:Deep continuous clustering
优化的问题: 参数Ω是关于所有样本更新的,而Z只是关于单个样本和成对样本更新的,因此应该具有不同的学习率。使用Adam进行参数的学习。 mini-batch中,随机抽取子样本点不可行,因为会有相邻的样本点在mini-batch之外,因此需要随机选取边,从而构成子图\episilon ...
2022-03-21 19:55:46
1276
原创 DCN: Simultaneous Deep Learning and Clustering
同时进行embedding的学习和k-means聚类。 损失函数: 重构损失 + 聚类损失 重构损失可以避免聚类的平凡解 layer-wise pre-training k-means初始化 交替学习参数: 基于梯度的自编码器参数 类别学习 基于梯度的类中心更新 ...
2022-03-21 17:33:32
838
原创 DSN: Deep Subspace Clustering Networks
深度学习与子空间聚类的结合。与普通的自编码器相比,增加了低维特征空间的子表示层(蓝色框框)。 顾名思义,自表示,即一个样本可以被同属一个子空间的其他样本线性组合,同时要最小化线性组合系数来避免无穷多个解。 系数C不同的范数限制,产生了不同的自聚类方法。 稀疏子空间聚类:L1正则项 低秩子空间聚类:minrank(Z),进一步松弛为核范数最小化min‖Z‖∗(一个矩阵的秩等于其非零奇异值的个数。那么矩阵的秩最小化等价于矩阵的奇异值非零个数尽量少,进一步可以松弛为矩阵的所有奇异值的和尽量小) 将限制条件以正
2022-03-21 16:01:41
2028
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人