!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!
💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。
本研究旨在探讨腹膜透析导管早期移位的影响因素,并构建预测模型以提升术前风险评估能力。研究纳入322例接受首次腹膜透析导管置入术的患者,通过单因素分析与Logistic回归发现,骨盆直径较小(OR=0.9564,P=0.002)和导管末端距耻骨联合距离较大(OR=1.0277,P<0.001)为导管移位的独立危险因素,模型AUC为0.76,具中等预测效能。
然而,传统统计模型在变量选择和非线性处理方面存在一定局限,难以充分挖掘多维数据间的复杂关系。因此,进一步采用逐步回归和Lasso等方法从39个候选变量中筛选出22个关键特征,并构建8种机器学习模型进行对比。结果显示,决策树模型在准确率(0.8875)、F1值(0.7273)和AUC(0.86)方面表现最佳,且计算效率高,优于其他模型。
本研究表明,骨盆解剖结构与导管移位风险密切相关,基于机器学习的预测模型具有良好的临床应用前景,特别是决策树模型可为术前个体化风险评估与干预策略提供有力支持。
关键词:腹膜透析;导管移位; Logistic回归;机器学习;Lasso
目录
(一)研究背景和意义..................................................................................... 1
1.国内外研究现状................................................................................ 2
1.临床资料收集.................................................................................... 3
2.影像学资料收集................................................................................ 4
3.导管移位的特征分析........................................................................ 5
4.基于机器学习模型的移位风险预测................................................ 5
二、导管移位的特征分析................................................................................... 6
(一) PD 导管移位情况................................................................................. 6
(二)描述性统计分析..................................................................................... 6
1.连续变量中移位与非移位组腹透指标可视化比较........................ 6
2. 分类变量中移位与非移位组腹透指标可视化比较...................... 7
3.骨盆直径与距联合距离的分布细节................................................ 8
1.移位组与非移位组一般资料的比较................................................ 9
2.移位组与非移位组植管及植管后相关资料比较.......................... 10
3.移位组与非移位组临床检验资料、骨盆径线比较:................... 11
4.移位组与非移位组临床资料的二元 logistic 回归分析............... 12
三、基于机器学习模型的变量筛选过程......................................................... 13
1、向前逐步回归............................................................................... 13
2、向后逐步回归............................................................................... 14
3、双向逐步回归............................................................................... 15
(三)Logistic+Adaptive Lasso...................................................................... 17
四、 基于机器学习模型的移位风险预测....................................................... 19
(二)传统机器学习模型相关理论............................................................... 19
1.八类传统机器学习模型.................................................................. 19
2.超参数搜索——网格搜索.............................................................. 23
五、实验结果对比分析..................................................................................... 23
(一)模型评价指标....................................................................................... 23
1.导管移位特征与影响因素分析...................................................... 25
2. 特征选择与模型构建.................................................................... 26
3. 临床意义........................................................................................ 26
1.术前精准评估和术后早期管理强化.............................................. 26
3.解剖参数的静态性.......................................................................... 26
4.模型优化空间存在.......................................................................... 26
一、引言
(一)研究背景和意义
据数据统计显示,2017 年全球慢性肾脏病(chronic kidney diseases, CKD)患者数量为 6.975 亿,平均患病率为 9.1%,而中国 CKD 患病人数达 1.32 亿,占全球 CKD患者的 18%,平均患病率为 10.8%[1]。CKD 持续进展引起肾功能不可逆的下降,最终会进展至终末期肾病(end-stage renal disease, ESRD)。ESRD 并发症多、预后差、死亡率高,目前已逐渐成为我国乃至全球的公共卫生难题之一。ESRD 患者的主要治疗方式为肾脏替代治疗(Renal replacement therapy, RRT),包括血液透析(hemodialysis, HD)、PD、肾移植等,不同方式有各自的优缺点。PD 以其操作简单、居家进行、保护残余肾功能、对机体内环境影响较小、血流动力学稳定等优点,近年来逐渐在 ESRD 患者中广泛应用。随着腹膜透析技术和腹膜透析质量的不断提高,腹膜透析治疗和管理经验日趋成熟,中国的腹膜透析患者也在持续增长,PD 逐渐成为我国 ESRD 患者重要的肾脏替代治疗方式之一[2]。
而随着腹膜透析病人不断增多,PD 的相关并发症逐渐得到临床医生的重视。PD的并发症包括感染性并发症和非感染性并发症:感染性并发症包括感染性腹膜炎和导管相关性感染,如出口隧道感染等;非感染性并发症包括:导管功能障碍、腹透液渗漏、胸腔腹腔瘘、疝、出血、蛋白质丢失及营养不良等[3]。而 PD 导管功能障碍包括导管移位、导管堵塞等,主要表现为腹透液引流不畅或者完全不能出/入腹透液。腹膜透析管移位是指腹部立位 X 线平片提示腹膜透析管末端超出小骨盆,即超出膀胱直肠窝处(男性)或超出子宫直肠窝处(女性),伴或不伴功能障碍。若导管移位不伴功能障碍,即腹透液引流正常,可暂予观察,或予以保守治疗,如改变体位、适当增加运动、通便、手法复位等促进导管复位[4];若伴有引流不畅,可先按上述方法保守治疗,若仍无效则需要再次手术植管或改为血液透析治疗。这些无疑加重了 PD 患者的经济负担与病痛[5]。因此,保持功能良好的腹膜透析管是 PD 成功的关键,预防导管移位对于保证 PD 顺利进行十分重要。
目前认为引起腹膜透析管移位原因包括:导管植入位置欠佳、皮下隧道不合理、外力牵拉、肠蠕动异常等[4],而导管移位的影响因素包括植管手术相关因素和患者自身相关因素等[6]。有研究发现,腹透导管植入手术时间较长的患者,更容易发生导管移位等 PD 相关并发症[7],提示导管移位与植管手术者手法、经验密切相关。而不同的植管手术方式、导管类型、手术切口位置等也均与患者腹膜透析管移位相关[6][8][9]。此外,还与患者的自身相关因素如既往腹部手术史、糖尿病史、肥胖、胃肠功能紊乱等相关[6]。
(二)文献综述
1.国内外研究现状
目前,国内外关于PD导管移位的研究主要集中在两大方向:一是导管植入相关因素,二是患者自身相关因素。
在导管植入相关因素方面,国外研究普遍认为,导管的植入方式、导管类型、术者经验及手术操作过程中的技巧均可能影响导管位置的稳定性。John等[10]指出,传统开腹法与腹腔镜法在导管位置控制方面存在一定差异,腹腔镜下可视植管有助于精准定位导管,降低术后导管功能障碍发生率。Vijayan等[11]的研究则强调,术中导管末端定位于直肠膀胱窝(男性)或子宫直肠窝(女性)是确保引流通畅的关键,任何位置的偏差均可能增加导管移位风险。国内研究也取得了一定进展。何强等[12]在对不同手术方式的比较中发现,经腹直肌外侧隧道植管可显著减少导管移位率。陈冬平等[13]对超过300例PD患者的回顾性分析显示,植管术时间较长、术中多次调整导管位置者,术后发生导管移位的风险明显升高。此外,术者经验也是不可忽视的因素,手术经验不足的新手术者植管患者的导管移位发生率高于资深术者。
在患者自身因素方面,国外学者如Twardowski等[14]指出,肥胖、腹内压高、便秘、胃肠功能紊乱等可通过改变腹腔内力学环境,促进导管移位的发生。糖尿病患者由于胃肠蠕动减弱、腹肌张力差,也被认为是导管移位的高危人群。国内研究也有类似发现,袁丹等[15]研究表明,既往腹部手术史会改变腹腔解剖结构,易形成粘连,影响导管定位和稳定性。江燕等[16]则指出,患者术后早期频繁体位变换、剧烈运动或便秘等行为也可能促使导管偏移。
2.述评
腹膜透析(PD)作为终末期肾病(ESRD)患者重要的肾脏替代治疗方式,近年来在我国应用日益广泛。然而,导管移位作为PD常见的非感染性并发症,严重影响透析效果及患者生活质量。现有研究表明,导管移位的发生与植管手术方式、术者经验、导管类型、术中定位及患者自身因素如肥胖、便秘、既往腹部手术史等密切相关。尽管国内外已有部分文献探讨了导管移位的影响因素,但研究多为单中心、回顾性分析,样本量有限,结果缺乏统一标准,影响了结论的可靠性和推广性。目前尚缺乏对术后早期导管移位系统性的量化研究,临床在预防和管理方面仍面临诸多挑战。因此,基于本中心真实临床数据,分析术后1个月内导管移位的发生情况及其相关因素,将为完善腹膜透析术后管理、减少并发症、延长导管使用寿命提供有力证据,对提升PD治疗效果具有重要意义。
(三)植管方法
PD 植管方式包括手术切开法植管、腹腔镜法植管、经皮穿刺植管等,本研究所有患者采取手术切开法植管或腹腔镜植管,腹腔镜植管术中行导管固定术;所有导管均采用Tenckhoff双 cuff 卷曲管。植管术后第 1 天暂不行腹膜透析,术后第 2天开始根据患者具体情况确定是否开始透析及腹膜透析模式。腹膜透析模式包括间歇性腹膜透析(intermittent peritoneal dialysis, IPD)、持续性非卧床腹膜透析(continuous ambulatory peritoneal dialysis, CAPD)。
(四)研究内容
本文以解放军联勤保障部队第九〇〇医院肾脏病科腹膜透析中心收治的 322 例接受腹膜透析植管术的终末期肾病(ESRD)患者为研究对象,结合患者术前影像资料测量骨盆解剖参数,探索其对腹膜透析导管早期移位情况的影响。本文将导管早期移位识别作为一个二分类问题,基于传统统计方法与机器学习方法建立预测模型,并评估模型的性能。具体研究内容如下:
1.临床资料收集
(1)收集患者的一般资料:姓名、性别、年龄、体重指数(BMI)、文化程度、原发病、糖尿病史、既往腹部手术史。
(2)植管及植管后相关资料:植管方式、植管日期、手术切口位置、植管手术医师、拍片日期、植管后开始腹透时间、透析模式、每日腹透次数、起始腹透液量、导管移位后的处理方式及结果等。
(3)相关实验室检查结果:白细胞、血红蛋白、血小板、血肌酐、尿素氮、白蛋白、总蛋白、甘油三酯、胆固醇、低密度脂蛋白、血钠、血钾、血磷、血钙、全段甲状旁腺激素(intact parathyroid hormone,iPTH)等。
2.影像学资料收集
(1)导管位置:为明确导管植入位置及早期发现导管移位,一般在导管植入术后 1-3 天内进行腹部 X 线平片检查。导管末端正常位置应位于真骨盆内,即患者膀胱直肠窝(男性)或子宫直肠窝(女性)处,详见图 1。若导管末端向上飘移出真骨盆,即为导管移位,详见图 2。查看植管术后患者的腹部立位 X 线平片,判断导管是否移位并记录导管末端位置。
(2)骨盆径线的测量:骨盆入口前后径:指耻骨联合上缘至骶骨岬前缘正中之间的直线距离,平均值约为 11 cm;骨盆入口横径:左右髂耻缘间的最大距离,平均值约为 13 cm;骨盆入口斜径:左右各一,左骶髂关节至右侧髂耻隆突间的距离为左斜径,右骶髂关节至左侧髂耻隆突间的距离为右斜径,平均值约为 12.75 cm。在腹部立位 X 线片上,测量骨盆入口前后径、骨盆入口横径、骨盆入口右斜径,测量示意图如图 3。
图 1 腹膜透析管的正常位置
图 2 腹膜透析管移位
图 3 骨盆径线的测量
3.导管移位的特征分析
根据术后1个月内腹部立位 X 线结果,标注是否发生导管移位,并记录是否出现功能障碍及是否成功复位。从导管是否移位这个角度,结合骨盆解剖参数进行描述性统计与单因素分析,探索其与导管功能状态的相关性。
4.基于机器学习模型的移位风险预测
将导管是否发生移位视为二分类问题,采用逐步回归和LASSO方法进行特征筛选,避免多重共线性影响,分别构建八种机器学习模型(决策树、支持向量机、随机森林、朴素贝叶斯、神经网络、KNN、XGBoost、梯度提升树)。通过网格搜索优化模型超参数,构建预测模型。最终使用准确率、精确率、F1 值、召回率与 AUC 值评估模型的分类效果,比较不同算法在导管移位预测中的泛化能力。
总结
本研究围绕骨盆解剖参数对腹膜透析导管早期移位及复位的影响展开,通过回顾性分析 322 例腹膜透析患者的临床资料,结合传统统计方法与机器学习模型,系统探讨了导管移位的相关因素及预测模型构建,主要结论如下:
1.导管移位特征与影响因素分析
术后1个月内导管移位的发生率为28.57%,其中67.39%的患者虽发生移位但导管功能通畅,提示早期移位并不一定伴随功能障碍。通过单因素与多因素回归分析发现,较小的骨盆直径(OR=0.9564,P=0.002)和较大的导管末端距耻骨联合距离(OR=1.0277,P<0.001)是导管移位的独立危险因素。骨盆空间不足可能降低导管稳定性,而导管末端位置过高则可能增加移位风险。此外,手术相关因素方面,右旁正中切口的移位率显著高于左旁正中切口(P=0.0358),提示术式选择亦需纳入术前风险评估。
2. 特征选择与模型构建
通过逐步回归、Lasso 和 Adaptive Lasso 等方法,从39个候选变量中有效筛选出22个关键特征,如骨盆直径、距联合距离、年龄、切口位置、血红蛋白等,为后续模型训练提供了更具信息价值的输入特征。在比较多种机器学习算法的基础上,决策树模型表现最优,其准确率达0.8875,F1值为0.7273,AUC为0.86,且运行时间极短,展现出良好的分类性能和运算效率,适合于临床快速部署。
3. 临床意义
本研究首次系统量化了骨盆解剖结构与导管移位之间的关联性,为术前风险评估提供了可靠的影像学指标,如骨盆直径和导管末端位置等。基于机器学习的预测模型,特别是高效的决策树算法,为导管移位的个体化风险预判提供了切实可行的技术路径。未来可将此模型嵌入临床信息系统中,辅助医师在术前选择合适的切口位置或优化导管路径设计,从而降低移位发生率。
更多项目:
另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!
!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!