单纯形法Python实现

本文基于《运筹学教程》第四版介绍了单纯形法的理论基础,并提供了Python代码实现,包括循环求解、最优性检验和结果输出。代码仅考虑模型有最优解的情况,未涵盖无最优解或无限最优解的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


目录

前言

一、单纯形法理论基础

二、Python代码实现

1.循环求解

2.最优性检验

 3.结果输出

4.完整代码


前言

本文代码参考《运筹学教程》(第四版)中的第一章第四节中所介绍的单纯形法理论基础所实现,其中的各种符号表示与书中的符号对应。

其次,本文中只考虑模型有最优解的情况,不考虑模型无最优解或无限最优解。


一、单纯形法理论基础

单纯形法的理论可以在网上搜索到许多相关资料,在此不多赘述,直接进入正题。

二、Python代码实现

单纯形法的实现可以分为以为几个模块:循环、最优性检验、结果输出

1.循环求解

这里是单纯形法的主体部分,主要是分为以下几个步骤:求解检验数σ、确定换入基变量、确定换出基向量、对矩阵A进行高斯变换。以此循环。

代码如下:

def pivot(j,a,b):
    Cb=[c[i] for i in j]      #更新Cb

    # 对sigma进行求解
    sigma = np.array([0]*a.shape[1]).astype(float)   #求解sigma,用做后续的判定
    for i in range(a.shape[1]):
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值