交通流预测——day58 T-GCN:一种用于流量预测的时态图卷积网络

本文提出T-GCN模型,结合图卷积网络(GCN)和门控递归单元(GRU),有效捕捉城市道路网络的空间及时间依赖性,实现精准的交通流量预测。

I. INTRODUCTION

(1) Spatial dependence

在这里插入图片描述

由于相邻道路间影响较强,短期相似度由状态1(上游道路与中游道路相似)变为状态2(上游道路与下游道路相似)

(2) Temporal dependence

在这里插入图片描述

(a)周期性。 道路中的交通量在一周内呈周期性变化。
(b)趋势。 道路交通量在一天内有趋势性变化。

III. METHODOLOGY

A. Problem Definition

Definition 1: road network G
Definition 2: feature matrix XN×P

问题转换为求映射函数 f (式1)
在这里插入图片描述

  1. n 是历史时间序列的长度
  2. t 是需要预测的时间序列的长度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值