目录
AI大模型应用案例语音系列文章:
Linux调试工具系列文章:
你是否遇到过嵌入式Linux 各种调试难题,这里有各种调试工具介绍让你轻松解决各种程序崩溃,内存泄漏检查,系统跟踪,性能提升方法等,可让你头发少掉几根:
【Linux 系统调试】内存分析工具Valgrind使用方法详解-CSDN博客
一、技术背景
在当今的信息时代,人们面对着前所未有的海量数据。如何有效地从这些数据中提取有价值的信息,并以自然语言的形式呈现给用户,成为了人工智能领域的重要挑战之一。传统的大型语言模型,尽管在处理自然语言任务方面表现出色,但它们往往受限于训练时所使用的静态数据集,这导致了在提供最新信息或特定领域的深入见解方面的不足。为了解决这些问题,检索增强生成Retrieval-Augmented Generation(RAG)技术应运而生。
二、RAG的核心理念
RAG是一种创新的技术框架,它通过将外部知识库与强大的语言生成能力相结合,构建出一种全新的问答系统框架,显著提升了AI系统回答问题和生成内容的准确性和相关性。其核心原理在于,将大规模文本数据中的知识信息(如网页内容、文档资料等)作为输入,通过检索模块找到最相关的文本片段,再利用生成模型对这些检索到的内容进行理解和重写,最终生成一个既连贯又准确的答案。
这种技术的特点在于,它打破了传统基于预训练模型的问答系统仅依赖于模型内部知识的局限性,而是通过实时检索外部数据源,极大地丰富了回答的内容来源。更为重要的是,RAG技术能够在生成过程中,对检索到的文本进行合理的引用和扩展,从而确保答案的准确性和可靠性。为AI生成答案提供事实依据,解决了传统AI"凭空编造"或有时答非所问的问题。
简而言之,RAG的工作流程包括两个主要步骤:检索和生成。首先,根据用户的查询,系统会在一个预先构建的知识库中进行搜索,找到最相关的文档或段落;然后,基于检索到的信息,结合大型语言模型的强大生成能力,系统能够创建出更加精准、上下文相关的响应。以下详细介绍RAG技术的实现原理与技术细节。
三、RAG技术的实现原理与技术细节
1、RAG技术的核心组成部分
1.1 检索模块(Retrieval Module)
检索模块的主要目标工作是从大规模知识库中检索与问题相关的文本片段。其中实现细节步骤如下:
- 信息表示:知识库中的文本通常会被预处理并转化为向量表示,例如使用BERT等预训练模型提取文本的语义向量。
- 索引结构:为了提高检索效率,知识库会构建倒排索引(如Lucene)或向量化索引(如ANN,Approximate Nearest Neighbor)。
- 检索算法:常用的检索算法包括BM25(基于TF-IDF的文本匹配)、余弦相似度(向量匹配)以及深度语义检索模型(如DPR, Dense Passage Retrieval)。
- 结果筛选:检索模块会返回多个相关片段,通常根据相似度排序,并筛选出最相关的一部分供生成模型使用。
1.2 生成模型(Generation Module)
生成模型的主要目标工作是基于检索到的内容片段,生成一个准确、连贯的答案。其中实现细节步骤如下
- 模型架构:生成模型通常基于大规模预训练语言模型(如GPT-3、PaLM、LLAMA等)。
- 输入形式:检索到的内容片段与问题会被拼接成一个完整的输入(例如:
问题 + 回车 + 检索内容1 + 回车 + 检索内容2
)。 - 生成逻辑:生成模型会通过解码过程(如贪心搜索、束搜索、采样等)生成一个自然语言的答案。在生成过程中,模型会结合问题和检索内容,提取关键信息并进行适当的重组和扩展。
- 生成控制:为了避免生成不准确或不相关的内容,通常会引入生成控制机制,例如基于检索内容的关键词约束(keyword constraints)、语义约束(semantic constraints)等。
1.3 知识库(Knowledge Base)
知识库的主要目标工作是存储与问题相关的背景知识或具体内容片段。其细节如下:
- 知识来源:知识库可以是结构化数据库(如文档库、网页内容、书籍内容等)或非结构化文本(如文档片段)。
- 构建流程:知识库通常需要经过清洗、分段、向量化等预处理步骤。
- 更新机制:为了保持知识的及时性,知识库需要定期更新(例如,实时爬取网页内容或定期导入新的文档)。
2、RAG技术的实现流程
2.1 输入处理(Input Processing)
- 将用户的自然语言问题进行预处理,例如去除噪声、分词、句法分析等。
- 将问题转化为向量表示(例如使用BERT或T5模型提取语义特征)。
2.2 知识检索(Knowledge Retrieval)
- 根据问题的向量表示,在知识库中检索最相关的文本片段。
- 返回一定数量的检索结果(例如5-20个片段)。
2.3 内容生成(Content Generation)
- 将问题和检索到的内容片段拼接成一个完整的输入,并送入生成模型。
- 生成模型生成一个自然语言答案,要求答案既要准确又要流畅。
2.4 结果输出(Output)
- 对生成的答案进行后处理(例如去除重复、修正语法错误等)。
- 返回最终的答案给用户。
3、RAG技术的核心技术要点
3.1 检索技术(Retrieval Techniques)
- 关键词匹配:基于文本的关键词匹配(如BM25)。
- 语义匹配:基于向量的语义匹配(如DPR、SBERT)。
- 混合匹配:结合关键词和语义匹配的混合方法。
3.2 生成模型(Generation Model)
- 模型选择:通常选择性能强大的预训练语言模型(如GPT、PaLM)。
- 微调(Fine-tuning):为了更好地结合检索内容,可以对生成模型进行微调,例如使用检索增强的训练数据(RAG Training)。
- 生成策略:生成过程中可以引入策略(如基于规则的生成控制、基于强化学习的生成优化)。
3.3 知识表示(Knowledge Representation)
- 文本分段:将知识库中的文本划分为较小的段落或句子,以提高检索的准确性。
- 向量化:将文本转化为向量表示,用于高效检索。
- 索引优化:优化索引结构(如 ANN 索引)以提高检索速度和准确性。
四、一个简单的例子理解RAG
一个简单的客服机器人实例运用场景
- 场景:
某电商公司需要处理"退货政策"类咨询
- 实施步骤
第一步:准备知识库
-
收集资料:如收集PDF版《退货政策》、客服培训手册、历史咨询记录等。
-
文档预处理:
- 将PDF转为文字
- 按段落切分(每段200字左右)
- 示例段落:退货条件:商品未拆封、标签完好,自签收起7日内可申请退货。生鲜食品、定制商品除外。
第二步:建立智能书签
-
使用嵌入模型(文字转数字工具):
- 将每个段落转换为512位的数字编码
- 例如:"退货条件..." → [0.24, -0.57, 0.89,...,0.12]
2. 存入向量数据库:
- 类似图书馆索引系统
- 支持按语义相似度搜索
第三步:实时问答流程
-
用户提问:
"我买的鞋子穿了三天能退吗?"
-
智能检索:
- 将问题转为数字编码
- 在数据库找最相似的3个段落
- 找到结果:1. 退货期限说明(相关度92%)2. 鞋类特殊政策(相关度85%)3. 退款流程(相关度76%)
- 生成回答:
-
组合提示词:
根据以下资料回答问题:
[插入检索到的3个段落]
问题:我买的鞋子穿了三天能退吗?
要求:用口语化中文回答,不超过100字 -
AI输出:
根据规定,未拆封商品7日内可退。由于您已穿着使用,建议联系客服说明具体情况,若存在质量问题可提供照片申请特殊处理。
-