目录
1.1.1 如何计算查询(Query)、键(Key)和值(Value):
1.1.2 缩放点积注意力(Scaled Dot-Product Attention)
方法1:正弦/余弦函数编码(原始Transformer方案)
4. 前馈神经网络(Feed-Forward Network)
1. 前馈神经网络(FFN)在Transformer模型中扮演以下关键角色
一、引言
在当今的人工智能领域,Transformer已经成为一种不可或缺的技术。它不仅革新了自然语言处理(NLP)领域,而且正在影响着计算机视觉、音频处理等多个AI分支。Transformer技术如同一位精通语言密码的破译专家,彻底改写了自然语言处理(NLP)的游戏规则。这项技术让机器第一次真正拥有了"理解上下文"的能力。
二、Transformer起源背景
在Transformer之前,序列数据的处理主要依赖于循环神经网络(RNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)。尽管这些方法在许多任务上取得了成功,但它们存在固有的局限性:难以并行化计算和处理长距离依赖问题。为了解决这些问题