【大模型学习】第十五章 Transformer技术 看这一篇就足够了

目录

一、引言

二、Transformer起源背景

1. 从"健忘症"到"过目不忘"的进化之路

三、一个简单的例子让你理解什么是Transformer

四、技术要点与底层原理

1. 自注意力机制(Self-Attention)

1.1 什么是自注意力?

1.1.1  如何计算查询(Query)、键(Key)和值(Value):

1.1.2 缩放点积注意力(Scaled Dot-Product Attention)

1.1.3 两个生活化案例理解缩放因子平方根的绝妙设计

1. 考试成绩放大镜:为什么需要除以d_k的平方根?

2. 演唱会调音台:缩放如何平衡注意力?

1.1.4 两个生活化例子理解缩放因子为什么必须是平方根

1. 从数学推导看:为什么必须是 dk的平方根?

2. 从生活案例看:为什么考试例子中用 3的平方根?

2. 多头注意力

2.1 为什么需要多头注意力

2.1.1 捕捉多样化特征关系

 2.1.2 增强模型表达能力‌

2.2 多头注意力机制的工作原理 

3. 位置编码

3.1 为什么需要位置编码

3.2 实现原理

方法1:正弦/余弦函数编码(原始Transformer方案)

方法2:可学习的位置嵌入

3.3 可学习嵌入与正弦/余弦编码的区别与选择

4. 前馈神经网络(Feed-Forward Network)

1. 前馈神经网络(FFN)在Transformer模型中扮演以下关键角色

2 前馈神经网络(FFN)的结构

2.1 标准结构(以Transformer为例)

2.1 变体结构 

3 FFN与自注意力的对比

4. 代码示例(PyTorch实现) 

五、架构解析

1. 编码器(Encoder)

2. 解码器(Decoder)

3. 解码器与编码器的区别

4.整体架构

4.1 编码器和解码器的协同工作流程

4.2 Transformer模型的整体流程

六、实现方法

七、运用场景

八、总结


一、引言

        在当今的人工智能领域,Transformer已经成为一种不可或缺的技术。它不仅革新了自然语言处理(NLP)领域,而且正在影响着计算机视觉、音频处理等多个AI分支。Transformer技术如同一位精通语言密码的破译专家,彻底改写了自然语言处理(NLP)的游戏规则。这项技术让机器第一次真正拥有了"理解上下文"的能力。

二、Transformer起源背景

        在Transformer之前,序列数据的处理主要依赖于循环神经网络(RNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)。尽管这些方法在许多任务上取得了成功,但它们存在固有的局限性:难以并行化计算和处理长距离依赖问题。为了解决这些问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好多渔鱼好多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值