目录
(1)Transformer架构 基于自注意力机制的革命性模型
(2) 自监督学习(Self-supervised Learning)
一、技术背景
自然语言处理(Natural Language Processing, NLP) 是人工智能的一个分支,旨在让计算机能够理解、生成和响应人类语言。NLP 技术广泛应用于机器翻译、文本摘要、情感分析、问答系统、聊天机器人、信息抽取等场景。
随着深度学习的发展,特别是基于 Transformer 的模型(如 BERT、GPT 系列)的出现,NLP 的性能和应用范围得到了极大提升。现代 NLP 系统不仅能进行基本的词法和句法分析,还能理解上下文语义,并生成高质量的人类语言。
本技术文档将以一个完整的 NLP 应用流程为例,从文本预处理、特征提取、模型推理到结果输出,结合原理与代码实现,详细讲解 NLP 的核心技术流程。