softmax函数的功能及用法

本文详细介绍了Softmax函数在多分类问题中的应用,作为神经网络输出层的常用激活函数,它将任意实数值的向量转换为概率分布。文章还展示了如何在Python中实现Softmax函数,并提及了数值稳定性的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Softmax函数是一种常用的激活函数,通常用于多分类问题的输出层。其功能是将一个具有任意实数值的向量(通常称为“logits”)转换为一个概率分布,其中每个元素的值表示对应类别的概率。

Softmax函数的公式如下:

给定一个输入向量 ( z = (z_1, z_2, …, z_n) ),Softmax函数的计算公式为:

[
\text{softmax}(z_i) = \frac{e{z_i}}{\sum_{j=1}{n} e^{z_j}}
]
在这里插入图片描述

其中,( e ) 是自然对数的底(欧拉数),( z_i ) 是输入向量 ( z ) 的第 ( i ) 个元素。

Softmax函数将每个输入值转换为介于 0 到 1 之间的实数,并且确保所有输出值的总和为 1,因此可以看作是一种归一化函数。

Softmax函数的用法通常是在神经网络的输出层中,用于将网络的原始输出转换为对应于每个类别的概率。在训练过程中,Softmax函数帮助计算模型的损失(通常是交叉熵损失),并在反向传播过程中用于更新网络参数。

在实际应用中,Softmax函数是很常见的,因为它提供了一种直观的方式来解释神经网络的输出,并且适用于许多分类问题。

假设我们有一个神经网络模型,该模型用于将输入的特征向量映射到三个不同类别的概率。假设模型的输出是一个具有三个元素的向量,分别表示三个类别的得分。我们可以使用Softmax函数将这些得分转换为概率分布。

下面是一个简单的示例,演示了如何使用Python实现Softmax函数:

import numpy as np

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喝凉白开都长肉的大胖子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值