Softmax函数是一种常用的激活函数,通常用于多分类问题的输出层。其功能是将一个具有任意实数值的向量(通常称为“logits”)转换为一个概率分布,其中每个元素的值表示对应类别的概率。
Softmax函数的公式如下:
给定一个输入向量 ( z = (z_1, z_2, …, z_n) ),Softmax函数的计算公式为:
[
\text{softmax}(z_i) = \frac{e{z_i}}{\sum_{j=1}{n} e^{z_j}}
]
其中,( e ) 是自然对数的底(欧拉数),( z_i ) 是输入向量 ( z ) 的第 ( i ) 个元素。
Softmax函数将每个输入值转换为介于 0 到 1 之间的实数,并且确保所有输出值的总和为 1,因此可以看作是一种归一化函数。
Softmax函数的用法通常是在神经网络的输出层中,用于将网络的原始输出转换为对应于每个类别的概率。在训练过程中,Softmax函数帮助计算模型的损失(通常是交叉熵损失),并在反向传播过程中用于更新网络参数。
在实际应用中,Softmax函数是很常见的,因为它提供了一种直观的方式来解释神经网络的输出,并且适用于许多分类问题。
假设我们有一个神经网络模型,该模型用于将输入的特征向量映射到三个不同类别的概率。假设模型的输出是一个具有三个元素的向量,分别表示三个类别的得分。我们可以使用Softmax函数将这些得分转换为概率分布。
下面是一个简单的示例,演示了如何使用Python实现Softmax函数:
import numpy as np