ReID——行人重识别中常用loss与评价指标说明

本文介绍了行人重识别(ReID)领域的三种常见损失函数:Identity Loss、Verification Loss和Triplet Loss。Identity Loss将ReID视为图像分类问题,通过softmax计算每个样本被正确分类的概率。Verification Loss衡量两个样本间的关系,适用于正负样本对的区分。Triplet Loss则确保同一ID样本间的距离小于不同ID样本间的距离,以优化检索排序效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如有错误,请多多指教!

参考论文:Deep Learning for Person Re-identification:A Survey and Outlook
论文地址:https://arxiv.org/abs/2001.04193

ReID常用loss

在ReID中常见的loss有Identity Loss、Verification Loss、Triplet loss

1. Identity Loss.

把ReID问题看做是一个图像分类问题,每一个ID都是一个类。
在这里插入图片描述

计算公式:
在这里插入图片描述
n:每个batch训练的样本数
p( yi | xi ): 输入图像xi和其类别标签yi,经过softmax分类,xi被识别为yi类的预测概率,用p( xi | yi )表示。

公式解释:
batch个输入图像,经过softmax分类后能分到正确类的预测概率,将该概率取log,求和后再除以样本总数。

2. Verification Loss

在这里插入图片描述
verification loss可以度量两个样本之间的关系,其结构图如上图所示。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值