通过思考三部曲what how why了解AIGC

👦👦一个帅气的boy,你可以叫我Love And Program
🖱 ⌨个人主页:Love And Program的个人主页
💖💖如果对你有帮助的话希望三连💨💨支持一下博主

通过思考三部曲what how why了解AIGC

AIGC是什么?

       AIGC是人工智能生成内容(Artificial Intelligence Generated Content)的缩写,指的是通过人工智能技术自动生成的各种类型的内容,包括文本、图像、音频和视频等。

AIGC为什么会火?

       总结:有巨大的商业潜力,市场需求极大、提高各行各业工作效率、推动技术创新和社会发展
       AIGC的出现提高了内容创作的效率,并丰富了内容的形式和风格。随着深度学习和自然语言处理等技术的发展,AIGC在新闻、电商、影视等多个领域展现出广泛的应用潜力。
       科技发展迅速,各种AIGC模型的喷涌,应用门槛从天边降到眼前,再到触手可及,然后普及到各行各业,大众皆知,是未来人工智能的风口,也是社会变化新的革命。

AIGC怎么产生?

       AIGC的核心原理主要基于机器学习中的深度学习

请添加图片描述

       从传统机器学习模型(如随机森林、SVM、逻辑回归等),技术一步一步演进,再到多层感知机(MLP),是第一个 “多层神经网络”(20 世纪 80 年代),有了 “多层” 但 “深度不足”,是深度学习的雏形;再到深度信念网络(DBN) 和 “逐层预训练” 等理论提出,才渐渐出现深度学习模型的概念,然后进一步提出。
       然后是DNN、CNN、RNN等深度学习模型开始逐步出现在人们的视野,人脸识别、车牌号识别、语音助手等一些应用开始逐步被广泛应用,于此进入深度学习后的技术爆发期;
       在经历生成式对抗网络(GAN)、Transformer架构提出、chat-gpt发布,一步一步AIGC正式走入公众视野。到如今国内外文本、图像、语音实时交互、文生图、文生视频等多模态模型呈井喷式出现,并随着人们的奇思妙想逐步应用于各行各业,多模态应用逐步落地,实事求是的被安排到他们合适的岗位上。


       尽管AIGC已经被广泛的应用,但是它的路还相当漫长,无论是现在爆火的智能体还是RAG技术,抑或是Open AI刚发布的gpt5,时代不会停止脚步,AIGC或许也会成为历史,但是当自己踏入这场浪潮时那种渺小无力却又想奋勇直前的感觉,督促着你我在这条道路上继续前行

<think>嗯,用户让我解释一下之前提供的Vector类代码的“what, why, how”。首先,我需要回忆一下这个代码的结构和功能。用户之前已经问过关于不同长度向量如何处理的问题,现在他们可能希望更深入地理解这个类的设计思路、目的和实现方法。 首先,确定“what”部分。这个Vector类是用来做什么的?看起来是创建一个向量对象,支持加法、点积等操作,并且能处理不同长度的向量。需要明确说明这个类的用途和主要功能。 然后是“why”,为什么需要这样的设计?可能用户想知道为什么要处理不同长度的向量,或者为什么选择补零而不是其他方法。需要解释补零在数学上的合理性,比如保持线性代数中的维度对齐,或者在实际应用中的场景,比如数据填充。 接下来是“how”,即如何实现这些功能。需要详细说明`_align_dimension`方法的作用,如何在加法和点积中使用它,以及各个魔法方法如`__add__`和`dot_product`的具体步骤。同时,可能需要提到异常处理,比如检查输入是否为Vector实例。 还要注意用户可能的隐藏需求。他们可能是在学习面向对象编程或者线性代数的基础,所以需要将解释与编程概念和数学原理结合起来。例如,补零在数学上相当于将向量扩展至高维空间,保持内积和加法的正确性。 此外,测试用例部分也需要提到,说明这些案例如何验证代码的正确性,尤其是不同长度和空向量的情况。用户可能关心代码的健壮性和边界条件处理。 要确保回答结构清晰,分点解释whatwhyhow,每个部分都简明扼要。可能还需要关联之前的回答,比如补零的方法已经在之前解释过,这里需要重申但不过于重复。同时,语言要尽量简单,避免过于技术性的术语,但又要准确无误。 最后,检查是否有遗漏的核心点,比如类的初始化、异常处理(如ValueError)、魔法方法的使用(__len__, __str__)等,这些都是类设计的重要组成部分,应该涵盖在解释中。</think>### 用 **What-Why-How** 框架解析这段代码: --- #### **What(代码是什么?)** 这是一个自定义的 `Vector` 类,实现了以下功能: - **数学向量**的抽象表示(例如 $[1, 2]$) - **加法运算**:支持不同长度的向量相加(短向量末尾补零对齐) - **点积运算**:同样支持不同长度的向量 - **维度对齐机制**:通过补零扩展短向量维度 - **异常处理**:确保操作对象类型合法 --- #### **Why(为什么需要这样设计?)** 1. **现实需求** - 实际应用中常遇到不同长度向量的运算(例如信号处理、缺失数据填充) - 数学上,补零操作可以看作将向量扩展至更高维度空间 2. **数学合理性** - 补零操作保持线性代数运算的维度对齐原则 (例如:$[1,2]$ 可视为 $[1,2,0,0]$ 的四维向量) - 点积运算要求维度一致,补零后公式仍有效: $$ \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i $$ 3. **编程友好性** - 允许用户直观操作向量,无需手动对齐维度 - 通过面向对象封装,隐藏内部实现细节 --- #### **How(如何实现?)** 1. **核心机制:维度对齐 (`_align_dimension`)** ```python def _align_dimension(self, other): max_len = max(len(self), len(other)) padded_self = self.data + [0] * (max_len - len(self)) # 短向量补零 padded_other = other.data + [0] * (max_len - len(other)) return padded_self, padded_other ``` - **输入**:两个向量 - **处理**:将较短向量末尾补零至与较长向量相同长度 - **输出**:对齐后的两个列表(例如 $[1,2] → [1,2,0,0]$) 2. **加法运算 (`__add__`)** ```python def __add__(self, other): padded_self, padded_other = self._align_dimension(other) result_data = [x + y for x, y in zip(padded_self, padded_other)] return Vector(result_data) ``` - 对齐维度后,逐元素相加 - 示例:$[1,2] + [1,2,3,4] → [2,4,3,4]$ 3. **点积运算 (`dot_product`)** ```python def dot_product(self, other): padded_self, padded_other = self._align_dimension(other) product_sum = sum(x * y for x, y in zip(padded_self, padded_other)) return product_sum ``` - 对齐维度后,逐元素相乘并求和 - 示例:$[1,2] \cdot [1,2,3,4] = (1×1) + (2×2) + (0×3) + (0×4) = 5$ 4. **边界处理** - 空向量自动补零(例如 `Vector([]) + Vector([5,5]) → [5,5]`) - 类型检查确保操作对象合法(`isinstance(other, Vector)`) --- ### **总结** 这段代码通过 **维度对齐补零** 的核心策略,在保证数学合理性的前提下,实现了不同长度向量的灵活运算,同时通过面向对象设计提升了代码的可维护性和易用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love And Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值