
人工智能
文章平均质量分 57
Love And Program
坚持是我的信念,不甘是我的动力,动力驱使,信念支撑,未来会发生什么呢?
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能——大白话熟悉目标检测基本流程
一篇关于快速熟悉目标检测流程的博客,如果你还不太明白目标检测是如何检测的,更不清楚整个流程,那希望你花几分钟读一下这篇入门级博客,我用自己的理解简化目标检测流程方便大家快速了解什么是目标检测原创 2022-11-07 04:00:00 · 2396 阅读 · 18 评论 -
上采样、下采样区别及作用
前言:真的一直忘记这两个概念,现在特地用自己的话来总结总结参考下采样–>> 7676->3838->1919 -->>缩小图像原理:对于一幅图像I尺寸为MN,对其进行s倍下采样,即得到(M/s)(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像ss窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值;简单来理解一下就是将图像缩小,以起到过滤作用小、信息冗余的特征,保留关键信息。1、随机下采样原创 2022-02-06 12:15:46 · 7748 阅读 · 0 评论 -
使用512KiB RAM基于单片机的实时摄像头人脸识别DNN论文解析
残余连接提供了具有更好训练能力的深度模型,但对于内存占用小的应用程序有一个主要缺点,残余连接的使用增加了(大部分时间翻倍)存储层激活所需的内存,从而增加了网络工作推断所需的内存。因为此应用是使用灰度相机,又由于使用的是彩色输入,于是我们在网络工作的开始添加了1个输入和3个输出通道的1x1卷积,以使用来自ImageNet数据的迁移学习。精度只下降了0.0005)是在每一层的连续内存池之上分配静态编译时缓冲区,并在接下来的步骤中考虑层输出的使用情况,这种解决方案需要对不同的网络子图进行推理图分析和不同的技术。原创 2021-08-08 15:42:00 · 1562 阅读 · 2 评论 -
classification.cpp的md(c++直接进行预测)
题目:CaffeNet C++分类示例图像分类:使用C++应用程序接口Caffe的核心是用C++编写的。使用Caffe的C++ API有可能实现类似于在一个Python代码在Notebooks示例中呈现的图像分类应用程序。要想看到关于Caffe C++ API更多用途的例子,你应该查看在tools/caffe.cpp里的caffe命令行工具的源代码。演示文稿:在examples/cpp_classification/classification.cpp中有一个简单的C++代码。为简单起见,此示例不支原创 2021-07-27 10:53:58 · 428 阅读 · 1 评论 -
CMSIS-NN CIFAR10的md
Caffe模型地址CMSIS-NN CIFAR10示例 这个例子展示了如何将经过训练的Caffe模型量化为8位,并使用[CMSIS-NN]这个将其部署到Arm Cortex-M 的CPU上。入门: 从训练过的Caffe模型生成代码依据的步骤如下:1、Caffe模型协议文本的网络解析。2、量化到8bit权重和激活原创 2021-07-22 10:41:30 · 1095 阅读 · 8 评论 -
pytorch下载
以前版本torch1.9之前的torch现版本原创 2021-07-07 12:07:52 · 120 阅读 · 0 评论 -
metric_logger小解
今天看见这个一个函数metric_logger,通过搜索资料发现他是utils中的一个MetricLogger类,可称它为度量记录器,因为这种都是自定义的,那我只说说我遇见的这个趴。 我们先来看看他初始化里有什么。 def __init__(self, delimiter="\t"): self.me原创 2021-07-07 10:28:50 · 6982 阅读 · 12 评论 -
人工神经网络学习(二)
通过上一次提前收集好的训练集和验证集来做此次实验。构建训练集和验证集from tensorflow.keras.preprocessing.image import ImageDataGeneratorfrom tensorflow.keras import Sequentialfrom tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization, Conv2D, MaxPool2Dnum_classes原创 2021-06-14 20:41:55 · 367 阅读 · 1 评论 -
人工神经网络学习(一)
今日的学习内容:用opencv-python库打开摄像头,定义一个面部正面探测器,并设定脸部图像坐标与尺寸,识别出人脸,并导入拍出的图片先导入所需的库,注意Python版本要与cv2版本一致,以及dlib版本opencv-python下载地址dlib下载地址import tensorflow as tfimport cv2import dlibimport numpy as np#定义面部正面探测器detector = dlib.get_frontal_face_detector()#原创 2021-05-12 23:07:36 · 178 阅读 · 1 评论