POJ 1182 食物链(并查集)

本文介绍了一种使用路径压缩并查集解决动物食物链关系判断问题的算法。通过定义节点间的关系,包括同类、捕食与被捕食,实现对一系列描述语句真假性的判断。算法分析了关系传递性,确保了复杂食物网中关系的一致性和有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。 
有人用两种说法对这N个动物所构成的食物链关系进行描述: 
第一种说法是"1 X Y",表示X和Y是同类。 
第二种说法是"2 X Y",表示X吃Y。 
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。 
1) 当前的话与前面的某些真的话冲突,就是假话; 
2) 当前的话中X或Y比N大,就是假话; 
3) 当前的话表示X吃X,就是假话。 
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。 

Input

第一行是两个整数N和K,以一个空格分隔。 
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。 
若D=1,则表示X和Y是同类。 
若D=2,则表示X吃Y。

Output

只有一个整数,表示假话的数目。

Sample Input

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

Sample Output

3

首先要意识到本题是路径压缩并查集问题。对于任意节点X与Y,只要X与Y在同一个分量中,就表示他们之间的关系是已知的(可以通过中间节点推出来)。

        设节点A->节点B的值=节点A与节点B的关系:

        A->B==0 表示A与B同类,此时B->A也==0(B与A同类)。

        A->B==1表示A吃B,此时B->A==2(B被A吃)。

        A->B==2表示A被B吃,此时B->A==1(B吃A)。

        通过任意A->B和B->C的关系,我们能推出A->C的关系。通过任意A与B关系,B与C关系,C与D关系我们能推出A与D关系。因为A->B的值等于B->A的值的逆(想想是不是)。

        分析到此我们可以用一般的路基压缩并查集来做本题,即:

        findset(x)时,先找出x的父亲节点->根的关系v2,然后用r[x](表x到x父亲的关系)与v2合并可以得出x到根的关系。比如x->父==1时,父->根==1时,那么x->根==2(想想是不是)。

        对于bind(u,v,relation)来说,只要找出u->u分量根的关系,v->v分量根的关系,且利用u与v的关系relation,可以推断出u分量根fu与v分量根fv的关系。

        对于并查集的基础结构就做完了,当如果输入r x y时,且x与y在同一分量(x与y的关系可推断出),那么只要x与y的关系与r所指关系不同,那么说明本句是假话。另外两种假话情况很简单就不讨论了。

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<queue>
#include<map>
#include<vector>
#include<math.h>
const int INF = 0x3f3f3f3f;
using namespace std;
typedef long long ll;
typedef double ld;
typedef unsigned long long ull;
const int maxn=50000+5;
int fa[maxn];
int r[maxn];//与父的关系

int rev(int val)//返回逆向关系
{
    return (3-val)%3;
}

int rela_2(int v1,int v2)//由两个连续关系推出1个直接关系
{
    if(v1==0) return v2;
    if(v2==0) return v1;
    if(v1==1 && v2==1) return 2;
    if(v1==1 && v2==2) return 0;
    if(v1==2 && v2==1) return 0;
    if(v1==2 && v2==2) return 1;
}

int rela_3(int v1,int v2,int v3)//3间接关系推1直接关系
{
    return rela_2(rela_2(v1,v2),v3);
}

int findset(int x)
{
    if(fa[x]==-1) return x;

    int root=findset(fa[x]);
    r[x] = rela_2(r[x],r[fa[x]]);
    return fa[x]=root;
}

int bind(int u,int v,int relation)
{
    int fu=findset(u);
    int fv=findset(v);
    if(fu!=fv)
    {
        r[fu]=rela_3(rev(r[u]), relation, r[v]);
        fa[fu]=fv;
        return 0;
    }
    else//u与v在同一连通分量
    {
        if(rela_2(r[u], rev( r[v] ) ) != relation) return 1;
        return 0;
    }
}

int main()
{
    int n,k;
    int cnt=0;//假话数
    scanf("%d%d",&n,&k);
    memset(fa,-1,sizeof(fa));
    memset(r,0,sizeof(r));
    while(k--)
    {
        int relation,x,y;
        scanf("%d%d%d",&relation,&x,&y);
        relation--;//这里记得减1
        if(x>n || y>n || (relation==2 && x==y) )
        {
            ++cnt;
            continue;
        }
        cnt += bind(x,y,relation);
    }
    printf("%d\n",cnt);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值