POJ 3268 Silver Cow Party (dijstra)

本文探讨了如何使用最短路径算法解决有向图中从特定点出发到达其他所有点,并从所有点返回该特定点的最短距离问题。通过两次运行Dijkstra算法,一次正向寻找最短路径,一次反向寻找返回路径,从而找到最长的往返时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description:

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

给出1-n个点和m条边,求x这个点到其他点和其他所有点到x点的最短距离。有向图

先跑一遍dijstra,求出想点到其他店的距离之和,然后把方向反转这样在跑一遍最后求最大值就是了。

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<queue>
#include<set>
#include<map>
#include<iomanip>
#include<math.h>
using namespace std;
typedef long long ll;
typedef double ld;
const int INF=0x3f3f3f3f;
using namespace std;
int i,j,k;
int n,m,t;
int x,y;
int u,v,w;
int ans,res,cnt,temp,sum;
int dis[1055];
int vis[1055];
int mp[1055][1555];
int a[1055];
void dijkstra(int bg,int en)
{
    memset(vis,0,sizeof(vis));
    for(int i=1; i<=n; i++)
        dis[i]=mp[bg][i];
    int minn,pos;
    for(int i=1; i<=n; i++)
    {
        minn=INF;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j]&&dis[j]<minn)
            {
                pos=j;
                minn=dis[j];
            }
        }
        vis[pos]=1;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j])
                dis[j]=min(dis[j],dis[pos]+mp[pos][j]);
        }
    }
    for(int i=1; i<=n; i++)
    {
        a[i]+=dis[i];
    }
}
int main()
{
    scanf("%d %d %d",&n,&m,&x);
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
        {
            if(i==j)
                mp[i][j]=0;
            else
                mp[i][j]=INF;
        }
    memset(a,0,sizeof(a));
    while(m--)
    {
        scanf("%d %d %d",&u,&v,&w);
        mp[u][v]=w;
    }
      dijkstra(x,n);
    for(i=1; i<n; i++)
        for(j=i+1; j<=n; j++)
            swap(mp[i][j],mp[j][i]);
    dijkstra(x,n);
    sum=0;
    for(int i=1; i<=n; i++)
        sum=max(sum,a[i]);
    cout<<sum<<endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值