Description:
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5
4 3
4 2
3 2
1 2
2 5
Sample Output
2
题意:
是给出m对牛的相互关系,求有多少个牛排名是确定的。如果一个牛和其余的牛关系都是确定的,那么这个牛的排名就是确定的了。
(1)首先,胜负关系是可以传递的,即a胜于b,b胜于c,那么a胜于c
(2)如何知道某头牛的名次是确定的呢?
若已知牛a胜于m头牛,且负余k头牛,m + k == n-1,那么我们一定可以确定牛a的排名是:k+1.
换句话说就是,我们只需要找出胜于牛a的牛的数目m,和负于牛a的牛的数目k,然后判断m + k == n-1?是否成立即可。
(3)若牛a胜于牛b,则在建图时添加一条a->b的有向边,那么“胜于”关系就转化成了“可达”关系了。我们只需要知道每一点的可达和被可达关系数目之和,就可以解决此问题了。
由于要知道任意两点之间的“可达”关系,所以使用floyd算法方便实现。
AC代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
int d[105][105];
int Floyd()
{
for(int k=1; k<=n; k++)
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
d[i][j]=d[i][j]||(d[i][k]&&d[k][j]);
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
int a,b;
memset(d,0,sizeof(d));
for(int i=1; i<=m; i++)
{
scanf("%d%d",&a,&b);
d[a][b]=1;
}
Floyd();
int ans=0;
for(int i=1; i<=n; i++)
{
int sum=0;
for(int j=1; j<=n; j++)
if(d[i][j]||d[j][i]) sum++;
if(sum==n-1)
ans++;
}
cout<<ans<<endl;
}
return 0;
}