POJ 3660 Cow Contest.(Floyd)

本文探讨了一种算法,用于解决牛群在编程竞赛中基于胜负关系确定排名的问题。通过构建有向图并运用Floyd算法,实现了精确计算每头牛可能的排名,特别关注那些排名完全确定的牛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description:

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

题意:

是给出m对牛的相互关系,求有多少个牛排名是确定的。如果一个牛和其余的牛关系都是确定的,那么这个牛的排名就是确定的了。

(1)首先,胜负关系是可以传递的,即a胜于b,b胜于c,那么a胜于c

(2)如何知道某头牛的名次是确定的呢? 
若已知牛a胜于m头牛,且负余k头牛,m + k == n-1,那么我们一定可以确定牛a的排名是:k+1. 
换句话说就是,我们只需要找出胜于牛a的牛的数目m,和负于牛a的牛的数目k,然后判断m + k == n-1?是否成立即可。

(3)若牛a胜于牛b,则在建图时添加一条a->b的有向边,那么“胜于”关系就转化成了“可达”关系了。我们只需要知道每一点的可达和被可达关系数目之和,就可以解决此问题了。

由于要知道任意两点之间的“可达”关系,所以使用floyd算法方便实现。

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
int d[105][105];
int Floyd()
{
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                d[i][j]=d[i][j]||(d[i][k]&&d[k][j]);
}
int main()
{
    while(scanf("%d%d",&n,&m)==2)
    {
        int a,b;
        memset(d,0,sizeof(d));
        for(int i=1; i<=m; i++)
       {
           scanf("%d%d",&a,&b);
            d[a][b]=1;
        }
       Floyd();
        int ans=0;
        for(int i=1; i<=n; i++)
        {
          int sum=0;
           for(int j=1; j<=n; j++)
                if(d[i][j]||d[j][i]) sum++;
            if(sum==n-1)
               ans++;
        }
        cout<<ans<<endl;
    }
    return 0;
}

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值