快速幂模板

本文介绍了一种快速计算m^k%p的方法,通过递归实现,时间复杂度为O(logk)。同时,提供了快速乘法的实现,适用于大数运算场景,确保了计算的效率与准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求 m^k%p,时间复杂度 O(logk)O(logk)。

ll qpow(ll x, ll n, ll mod)
{
    if (n == 0)
        return 1;
    ll res = qpow((x * x) % mod, n / 2, mod) % mod;
    if (n & 1)
        res = (res * x) % mod;
    return res % mod;
}

快速乘:

ll mul(ll a, ll b, ll mo)
{
	ll r = 0;
	while (b)
	{
		if (b & 1)
			r = (r + a) % mo;
		a = (a + a) % mo;
		b >>= 1;
	}
	return r;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值