递归实现格雷码GrayCode

本文介绍了格雷码的概念,这是一种相邻代码仅有一位不同的编码方式,也称为循环码或反射码。通过递归算法,可以生成任意位数的格雷码序列。以1、2、3位为例,展示了格雷码的特性,并指出n位格雷码数组大小为n^2。解题思路是利用递归,位数n的格雷码基于n-1的格雷码计算,递归终止条件为n=1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是格雷码?

在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。

现要求,给定一个整数n,请返回n位的格雷码,顺序从0开始。

那我们现在来列一下n位的格雷码:
(1)n=1

0
1

(2)n=2

00
01
11
10

(3)n=3

<
000
001
011
010
100
111
101
实验二 递归算法设计与应用 一. 实验目的和要求 1. 加深对递归算法的理解,并针对具体问题设计算法; 2. 分析算法的复杂性,寻找比较高效的算法,并实现。 3. 分析格雷码问题,并设计递归算法求解之。 二. 基本原理 递归是一种重要的程序设计方法。使用递归方法有时可使算法简洁明了,易于设计。 递归指算法自己调用自己, 有直接递归与间接递归两种。 递归方法用于解决一类满足递归关系的问题。即:对原问题的求解可转化为对其性质相同的子问题的求解。 三. 该类算法设计与实现的要点 1. 递归关系(特性):产生递归的基础。 当算法中某步骤要通过解性质相同的子问题实现时,该步骤用递归调用实现。 2. 递归出口(结束条件):确定递归的层数。 当子问题的规模充分小时可直接求解时,递归结束。 3. 参数设置:参数表示了原问题及其不同的子问题。 参数表示了子问题的大小和状态,以区别原问题以及不同层次的子问题。 4. 算法功能的设定:严格规定递归算法要解决什么样的问题。 算法功能的正确设定是保证递归过程正确进行的前提。 四. 实验内容――格雷码问题 1.问题描述 对于给定的正整数n,格雷码为满足如下条件的一个编码序列: (1) 序列由2n个编码组成,每个编码都是长度为n的二进制串。 (2) 序列中无相同的编码。 (3) 序列中置相邻的两个编码恰有一不同。 例如:n=2时的格雷码为:{00, 01, 11, 10}。 设计求格雷码递归算法并实现。 2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1769题 输入:输入的第一行是一个正整数m,表示测试例个数。接下来几行是m个测试例的数据,每个测试例的数据由一个正整数n组成。 输出:对于每个测试例n,输出2n个长度为n的格雷码。(为方便查看,在每个格雷码内,两个之间用一个空格隔开,如,00输出为:0 0)。两个测试例的输出数据之间用一个空行隔开,最后一个测试例后无空行。 3. 测试数据 输入:2 4 5 输出:0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 4. 设计与实现的提示 长度为n的格雷码是由长度为n-1的格雷码变换而成的。 可以用数组或字符串来存储格雷码。注意:对于较大的正整数n,用数组存储容易引起死机。 按照定义2n个长度为n的格雷码序列是不唯一的,若在ACM平台上提交程序,要求输出的编码序列与给出的范例具有相同的规律。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值