最短路算法-Floyd,dijkstra,bellman-Ford,SPFA

一 Floyd算法

  五行算法,遍历遍历遍历,用于所有点对的最短路径,若数据范围小可以使用,时间复杂度 O(N^3),空间复杂度O(N^2);

代码:

for(int k=1;k<=n;k++)
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(e[i][j]>e[i][k]+e[k][j])  //e记录始点到终点的距离
                e[i][j]=e[i][k]+e[k][j];

二,dijkstra算法——单源最短路

单源最短路,就是指某个定点到其余各个顶点的最短路 。

其实这种方法是一种基于贪心策略的算法。

1,每次扩展一个路程,选取最短路程的点,。(此时这个点的路程是最短路,因为其他的路程都比这条路长,从其他地方绕显然路径会更长,因此在之后的更新中,这个点的值不会改变。)

2,在用这个已经确定为最短路点对其他连通的边进行松弛。

3,重复以上两点,直到所有边都被确定。

提醒:这是一个不允许存在负边权的算法,因为扩展到负边权的时候会产生最短路,破坏了已经更新的点不改变的性质 

但是如果不优化的话,它的复杂度是O(n^2),比较低效,一般我们采用邻接表+优先队列的优化。

代码: 

 

//没有任何优化的dijkstra算法模板
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int k[n+1][n+1]; //记录路径;
int dis[n+1],biao[n+1],first[n+1],next[m+1];
int inf=0x3f3f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值