一 Floyd算法
五行算法,遍历遍历遍历,用于所有点对的最短路径,若数据范围小可以使用,时间复杂度 O(N^3),空间复杂度O(N^2);
代码:
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j]) //e记录始点到终点的距离
e[i][j]=e[i][k]+e[k][j];
二,dijkstra算法——单源最短路
单源最短路,就是指某个定点到其余各个顶点的最短路 。
其实这种方法是一种基于贪心策略的算法。
1,每次扩展一个路程,选取最短路程的点,。(此时这个点的路程是最短路,因为其他的路程都比这条路长,从其他地方绕显然路径会更长,因此在之后的更新中,这个点的值不会改变。)
2,在用这个已经确定为最短路点对其他连通的边进行松弛。
3,重复以上两点,直到所有边都被确定。
提醒:这是一个不允许存在负边权的算法,因为扩展到负边权的时候会产生最短路,破坏了已经更新的点不改变的性质
但是如果不优化的话,它的复杂度是O(n^2),比较低效,一般我们采用邻接表+优先队列的优化。
代码:
//没有任何优化的dijkstra算法模板
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int k[n+1][n+1]; //记录路径;
int dis[n+1],biao[n+1],first[n+1],next[m+1];
int inf=0x3f3f