人体姿态估计MPII数据集详解

本文详细介绍了MPII人体姿势数据集的结构,包括annolist中的标注信息,如图片名、关节位置、活动类别和视频来源。特别关注了.mat格式文件的六个组成部分及其作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集总览

在这里插入图片描述

数据集下载连接

链接: 官网下载.

数据集介绍

MPII人体姿势数据集是用于评估关节人体姿势估计的最先进的基准。该数据集包括大约25K张图像,其中包含超过40K个带有注释的身体关节的人。这些图像是使用建立的每天人类活动的分类法系统地收集的。总体而言,该数据集涵盖410个人类活动,并且每个图像都提供了一个活动标签。每一张图片都是从YouTube视频中提取的,并提供了前后未加注释的帧。此外,对于测试集,我们获得了更丰富的注释,包括身体部分闭塞和3D躯干和头部方向。
在这里插入图片描述官网中对数据集的标注的最后生成形式是用MATLAB打开的.mat格式·
后续因为实验需要,也有专家和学者将MPII数据集整合成了json形式以及h5格式。

本文主要将对.mat形式的MPII数据集做一个详解

在这里插入图片描述
用MATLAB打开标注文件后,发现本文件由六部分解释,在MPII官方网站也对这六部分做出了介绍
在这里插入图片描述

注:idx是英文index的缩写表示索引的意思     类似于数组的下标

1.annolist: 大小:24987 里面共涵盖了可以用作姿态估计的24987张图片的标注信息,这里先做粗略介绍,下文将重点介绍这个结构,以及所包含的信息
2.img_train(imgidx):0/1分别表示测试集/训练集
3.version:是数据集的版本号
4.single_person:如果图片中有1个分离的人,会给出1个标注人的矩形框 ,这里存放的是标注框的索引,如果存在两个人会给出数组大小是二的结构,并存放其索引;如下图所示
在这里插入图片描述
可以清晰的看到索引5的照片对应有两个矩形框 应该有两个分离的人。
在annolist中有关于图片名字的一列(下文将详细解释annolist中的各个字段)
在这里插入图片描述

import cv2
image=cv2.imread("D:\\015601864.jpg")
cv2.imshow('origin',image)
cv2.waitKey(0)

在这里插入图片描述
图中心处有两个分离的冰壶运动员
5.act:图片对应的活动种类和具体动作
在这里插入图片描述

注第一列给出的是活动种类第二列是具体活动 后面是相对应的id可以与官网给出的下图一一对应

在这里插入图片描述
6.video_list:指定YouTube提供的视频ID。要在YouTube上观看视频,请访问https://www.youtube.com/watch?v=video_list(videoidx) 具体内容如下:
在这里插入图片描述

对annolist中的标注信息做一个详解以015601864.jpg为例

在这里插入图片描述
在这里插入图片描述
1.image:打开后是对应图片的名字
在这里插入图片描述
2.annorect
在这里插入图片描述
由六部分组成
(x1,y1)表示head的左上坐标 (x2.y2)是head的右下坐标 根据这两个坐标可以获得一个head框
我用python对其相关像素做了改变效果如下
在这里插入图片描述
annopoints
在这里插入图片描述
包括16个身体关节的标注
0-右踝
1-右膝
2-右臀
3-左髋关节
4-左膝
5-左踝
6-骨盆
7-胸
8-上颈
9-头顶
10-右腕
11-右肘
12-右肩
13-左肩
14-左肘
15-左腕
标注后效果如下(这里为了方便观看,我将每个像素点放大了4倍 11放大到44):
在这里插入图片描述
scale和objpos:原作者表示scale=人体框高度/200 以objpos为粗略的人体中心点可以做出一个正方形的大致人体框,在我的计算和实验下仍不能准确的框出人体,若有小伙伴对这个有相关的了解可以私信探讨一下,我对这两个信息处理并使用后得到的效果如下。
在这里插入图片描述
这里的人体框会露出脚的部分。
3.frame_sec
4.vididx
第三部分是当前图片在视频的那一秒出现
第四部分是当前图片在哪个视频出现
第三和第四以及video_list综合使用可以找到这张图片的出处。
以上是我对这个数据集做出的详细解释,若出现错误请及时留言指正

### 寻找与人体姿态数据集相关的标签文件 #### COCO 数据集标签文件下载 COCO (Common Objects in Context) 数据集是一个广泛应用于计算机视觉研究的数据集,尤其适合于物体检测、分割和关键点检测等任务。为了获取其标签文件,通常可以通过官方提供的链接直接下载整个数据包,其中包括训练集、验证集及其对应的标签文件。标签文件一般是以JSON格式存储。 对于希望仅下载标签而不必下载全部图像的情况,可以直接访问官方网站并查找特定版本的标注文件链接[^1]: - 访问[COCO官网](http://cocodataset.org/#download),找到对应年份的数据集页面。 - 查看“Annotation”部分下的不同任务类型的标注文件选项,如instances, captions, keypoints等。 - 下载所需的`.zip`压缩包解压后即可获得相应的标签文件。 #### MPII 数据集标签文件下载 MPII Human Pose 数据集专注于人体关节位置的精确标记,在学术界被广泛应用作为评估算法性能的标准之一。此数据集中的标签信息最初以MATLAB可读取的`.mat`二进制格式给出,但考虑到Python和其他编程环境的需求,社区成员也贡献了转换成其他流行格式(比如JSON或HDF5)后的资源[^2]。 要得到MPII数据集的相关标签文件,建议采取如下方式: - 前往[官方GitHub仓库](https://github.com/anewell/pose-hg-train/tree/master/data/mpii)或其他可信源码托管平台上的镜像站点。 - 获取原始发布的`.mat`文件或是已经处理好的替代格式文档。 值得注意的是,由于版权原因,某些情况下可能无法直接提供完整的预处理过的标签文件下载地址,这时则需按照上述指引自行完成必要的操作来准备所需资料。 ```python import scipy.io as sio data = sio.loadmat('path_to_mpii_mat_file.mat') print(data.keys()) ``` 这段简单的Python脚本展示了如何利用SciPy库加载并查看`.mat`文件的内容结构,这对于理解所获标签的具体组织形式非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值