1.一维前缀和:
①题目:
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。
实现 NumArray 类:
NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))
示例:
输入:
[“NumArray”, “sumRange”, “sumRange”, “sumRange”]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
输出:
[null, 1, -1, -3]
解释:
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3)
numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1))
numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
来源:力扣(LeetCode)
链接:303. 区域和检索 - 数组不可变
②思路:
这里要注意一个小细节,sum[0]=0;sum[1]=sum[0]+nums[0]。
直接遍历,计算得到所有的前缀和。
求解i到j之间的元素和:
③代码:
class NumArray {
int[] sums;
public NumArray(int[] nums) {
int len = nums.length;
sums = new int[len+1];
for (int i = 1;i <= len;i++)
{
sums[i] = sums[i-1] + nums[i-1];
}
}
public int sumRange(int i, int j) {
return sums[j+1] - sums[i];
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(i,j);
*/
2.二维前缀和:
①题目:
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2) 。
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
来源:力扣(LeetCode)
链接:304.二维区域和检索 - 矩阵不可变
②思路:
前缀和的求法,与一维的思路类似,也是遍历保存结果与数组中,只是二维遍历的方式稍稍有些不同,具体见下图。
1.初始化:
2.先计算得到前缀和:
3.求子矩形面积:
③代码:
class NumMatrix {
public int[][] sum;
public NumMatrix(int[][] matrix) {
int n = matrix.length, m = n == 0?0:matrix[0].length;
sum = new int[n+1][m+1];
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= m;j++)
{
sum[i][j] = sum[i-1][j] + sum[i][j-1]-sum[i-1][j-1]+matrix[i-1][j-1];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
row1++;col1++;row2++;col2++;
return sum[row2][col2] - sum[row1-1][col2] - sum[row2][col1-1] + sum[row1-1][col1-1];
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
二维前缀和进阶:
给你一个 m x n 的矩阵 matrix 和一个整数 k ,找出并返回矩阵内部矩形区域的不超过 k 的最大数值和。
题目数据保证总会存在一个数值和不超过 k 的矩形区域。
示例1:
输入:matrix = [[1,0,1],[0,-2,3]], k = 2
输出:2
解释:蓝色边框圈出来的矩形区域 [[0, 1], [-2, 3]] 的数值和是 2,且 2 是不超过 k 的最大数字(k = 2)。
示例 2:
输入:matrix = [[2,2,-1]], k = 3
输出:3
来源:力扣(LeetCode)
链接:363. 矩形区域不超过 K 的最大数值和
解法一:
直接利用前缀和,遍历得到最大值:
class Solution {
public int maxSumSubmatrix(int[][] matrix, int k) {
int m = matrix.length, n = matrix[0].length;
int[][] sum = new int[m+1][n+1];
for (int i = 1;i <= m;i++)
{
for (int j = 1;j <= n;j++)
{
sum[i][j] = sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1] + matrix[i-1][j-1];
}
}
int ans = Integer.MIN_VALUE;
for (int i = 1;i <= m;i++)
{
for (int j = 1;j <= n;j++)
{
for (int p = i;p <= m;p++)
{
for (int q = j;q <= n;q++)
{
int cur = sum[p][q] - sum[i-1][q] - sum[p][j-1] + sum[i-1][j-1];
if (cur <= k)
{
ans = Math.max(ans, cur);
}
}
}
}
}
return ans;
}
}
参考大佬的题解:题解
刷题道路道阻且长~