
机器学习
文章平均质量分 87
总结一些机器学习相关的知识
星光银河
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
K-means 聚类算法详细总结
,使得同一簇内的数据点尽可能相似,不同簇间的数据点尽可能不同。其核心思想是通过迭代优化。 是一种经典的无监督学习算法,用于将数据划分为 。,即最小化每个数据点到其所属簇中心的距离平方和。:二维数据点,目标分为3簇(K=3)。原创 2025-05-09 22:16:41 · 1113 阅读 · 0 评论 -
概率模型(Probabilistic Models)详细总结
是基于概率论与统计学的框架,用于描述数据生成过程或对未知变量进行推断。其核心思想是通过概率分布表示变量间的关系,并利用概率规则(如贝叶斯定理、最大似然估计)进行预测、分类或生成。原创 2025-05-09 22:09:43 · 1064 阅读 · 0 评论 -
逻辑回归(Logistic Regression)详细总结
,但需注意线性假设的局限性。实际应用中,常通过特征工程、正则化或多模型集成提升性能。优化参数,是处理分类任务的基础工具。将线性组合映射为概率,利用。原创 2025-05-09 22:04:26 · 994 阅读 · 0 评论 -
集成学习详细总结
集成学习通过结合多个基学习器(Base Learner)的预测结果,获得比单一模型更优的泛化性能。其核心原理是“群体智慧”(Wisdom of Crowds),类似于委员会决策或多专家投票。虽然 Boosting 和 Stacking 都涉及多个模型的“串行”训练,但它们的。原创 2025-05-09 20:38:42 · 1152 阅读 · 0 评论 -
SVM支持向量机详细总结
:寻找一个最优超平面,将不同类别的样本分开,并最大化分类间隔(几何间隔)。:将数据映射到高维空间,使线性不可分问题变为线性可分。原创 2025-05-09 19:11:59 · 506 阅读 · 0 评论 -
KNN(K近邻)算法详解
其核心思想是“物以类聚”:通过计算样本间的相似性,找到与目标样本最接近的K个邻居,根据这些邻居的类别或值进行预测。,而非预先定义的“簇”。在K近邻(KNN)算法中,“邻居”是指与目标样本距离最近的。K近邻(KNN)是一种简单且直观的。原创 2025-05-08 20:52:45 · 1059 阅读 · 0 评论 -
决策树重要知识点整理
决策树是一种基于树形结构的监督学习算法,广泛应用于分类和回归任务。它的核心思想是通过对数据特征的逐步判断(类似“if-else”规则),将数据集划分成更小的子集,最终生成一棵树形模型,用于预测目标变量的结果。原创 2025-05-08 19:55:04 · 1112 阅读 · 0 评论