pytorch使用tensorboard

这篇博客介绍了如何在PyTorch项目中利用Tensorboard进行训练过程的可视化。首先,从`torch.utils.tensorboard`导入`SummaryWriter`。然后,在代码开始处初始化这个类,并指定数据保存路径。接着,在训练循环中,利用`tb_writer.add_scalar()`添加如学习率、损失函数等关键指标。最后,数据保存后,在终端启动tensorboard并查看可视化结果,以便于理解模型的训练状况和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里使用VIT代码作为例子:
1:在train.py文件导入SummaryWriter。

from torch.utils.tensorboard import SummaryWriter

2:在代码运行前初始化类,SummaryWriter(),括号内可加入用于保存数据的路径。
在这里插入图片描述
3:调用tb_writer,向里面添加可视化变量名字,比如学习率,损失函数等。
注意所加的位置在已经生成这些数据的后面。
在这里插入图片描述
4:在运行完之后,在保存数据的路径下打开,会找到一个名字很长的文件。
在这里插入图片描述
保持这个界面不要动,同时打开终端里的tensorboard(我在jupter notebook里)。
在这里插入图片描述
就就可以看到写入的数据了。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值