虚拟电厂调度优化系统

虚拟电厂调度优化系统 (VPP Optimization System)

基于 oemof-solph 构建的虚拟电厂多能源资源协调调度优化系统,采用 CBC 求解器进行线性规划优化,本项目采用的虚拟数据作为演示(不具有现实参考性)。


项目地址:https://github.com/2308087369/Virtual-power-plants
项目文档:https://github.com/2308087369/Virtual-power-plants/blob/main/docs/optimization_modeling.md

🌟 系统效果预览

在这里插入图片描述

🎯 项目概述

本项目是一个完整的虚拟电厂调度优化解决方案,旨在为虚拟电厂提供智能化的能源资源调度策略,实现多类型能源资源的协调运行和成本最优化。系统集成了源网荷储一体化的现代能源管理理念,支持可再生能源、传统发电、储能系统、可调负荷和电网交互的协同优化。

注意!!!

本项目采用的数据都是通过数据生成方式的虚拟数据,如果需要替换成真实数据可以参考生成代码进行替换。

核心功能

  • 多能源建模: 光伏、风电、燃气机组、储能系统、可调负荷、电网交互
  • 智能调度: 基于线性规划的最优调度策略,实现成本最小化
  • 需求响应: 冷机、热机等可调负荷参与系统优化,提供需求侧灵活性
  • 实时分析: 完整的经济性和技术性能分析
  • 可视化: 丰富的图表和报告生成
  • 配置化: 灵活的YAML配置文件管理

最新特性 ✨

  • 可调负荷: 新增冷机和热机可调负荷,支持需求侧响应
  • 经济优化: 综合考虑发电成本、储能成本、可调负荷成本
  • 智能可视化: 自动检测系统组件,动态生成相应图表
  • 完整报告: 包含可调负荷分析的详细运行报告

🏗️ 系统架构

vpp_opt_test_qqder/
├── README.md                    # 项目文档
├── pyproject.toml              # 项目配置
├── main.py                     # 主程序入口
├── config/                     # 配置文件目录
│   ├── system_config.yaml     # 系统参数配置
│   └── solver_config.yaml     # 求解器配置
├── docs/                       # 项目文档
│   └── optimization_modeling.md # 优化建模详细说明
├── src/                        # 源代码目录
│   ├── __init__.py
│   ├── data/                   # 数据生成模块
│   │   ├── __init__.py
│   │   └── data_generator.py   # 负荷、光伏、风电、电价数据生成
│   ├── models/                 # 优化模型模块
│   │   ├── __init__.py
│   │   └── vpp_model.py        # oemof-solph能源系统建模
│   ├── solvers/                # 求解器模块
│   │   ├── __init__.py
│   │   └── optimization_solver.py # CBC求解器配置和优化求解
│   ├── analysis/               # 结果分析模块
│   │   ├── __init__.py
│   │   └── result_analyzer.py  # 经济性分析和性能指标计算
│   └── visualization/          # 可视化模块
│       ├── __init__.py
│       └── plot_generator.py   # 结果图表生成和报告
├── tests/                      # 测试文件
│   └── test_vpp_system.py     # 系统测试
├── examples/                   # 示例和演示
│   └── demo_optimization.py   # 简单演示
├── outputs/                    # 输出结果目录
│   ├── plots/                  # 图表输出
│   └── reports/                # 报告输出
├── logs/                       # 日志文件
├── cbc/                        # CBC求解器
│   └── bin/
│       └── cbc.exe            # CBC可执行文件
└── test_*.py                   # 功能测试脚本

🔧 技术栈

核心技术

  • 优化引擎: oemof-solph 0.5.0+ (开源能源系统建模框架)
  • 求解器: CBC (Coin-or Branch and Cut) 线性规划求解器
  • 建模工具: pyomo 6.6.0+ (数学建模语言)
  • 数据处理: pandas, numpy
  • 可视化: matplotlib, plotly
  • 配置管理: PyYAML
  • Python版本: 3.12+

依赖包

oemof.solph>=0.5.0      # 能源系统建模
pyomo>=6.6.0            # 数学优化建模
psutil>=7.0.0           # 系统监控
PyYAML>=6.0             # 配置文件解析
scipy>=1.11.0           # 科学计算
matplotlib>=3.8.0       # 图表绘制
pandas>=2.1.0           # 数据分析
numpy>=1.26.0           # 数值计算

🚀 快速开始

1. 环境准备

# 克隆项目
git clone https://github.com/2308087369/Virtual-power-plants
cd vpp_opt_test_qqder

# 安装依赖(推荐使用uv)
uv pip install -e .

# 或使用pip
pip install -e .

2. 运行优化

# 运行完整的虚拟电厂优化演示
python main.py --demo

# 运行主程序(默认模式)
python main.py

# 查看帮助信息
python main.py --help

3. 测试功能

# 测试基本功能
python test_cbc.py

# 测试完整流程
python test_complete_flow.py

# 测试可调负荷功能
python test_adjustable_loads.py

# 运行单元测试
python tests/test_vpp_system.py

4. 配置自定义

编辑配置文件来自定义系统参数:

系统配置 (config/system_config.yaml):

# 能源资源容量配置
energy_resources:
  photovoltaic:
    capacity_mw: 50          # 光伏装机容量
  wind:
    capacity_mw: 30          # 风电装机容量
  gas_turbine:
    capacity_mw: 100         # 燃气机组容量
  battery_storage:
    power_capacity_mw: 50    # 储能功率容量
    energy_capacity_mwh: 200 # 储能能量容量

# 可调负荷配置
adjustable_loads:
  chiller:
    rated_power_mw: 20       # 冷机额定功率
    operating_cost_yuan_mwh: 50  # 运行成本
  heat_pump:
    rated_power_mw: 15       # 热机额定功率
    operating_cost_yuan_mwh: 40  # 运行成本

求解器配置 (config/solver_config.yaml):

cbc_options:
  threads: 4               # 使用线程数
  timeLimit: 300           # 求解时间限制(秒)
  ratioGap: 0.01          # 最优性间隙(1%)

📊 主要组件

1. 发电资源 ⚡

可再生能源
  • 光伏发电: 50MW装机,日间出力,成本5元/MWh
  • 风力发电: 30MW装机,全天候运行,成本8元/MWh
传统发电
  • 燃气机组: 100MW装机,最小出力30%,成本600元/MWh

2. 储能系统 🔋

  • 功率容量: 50MW (充电/放电)
  • 能量容量: 200MWh
  • 往返效率: 90.25% (充电95% × 放电95%)
  • 响应速度: 毫秒级快速响应

3. 可调负荷 🏭

冷机系统
  • 额定功率: 20MW
  • 调节范围: 30%-100%
  • 制冷效率: 85%
  • 响应时间: 5分钟
  • 运行成本: 50元/MWh
热机系统
  • 额定功率: 15MW
  • 调节范围: 20%-100%
  • 制热系数: COP=3.5
  • 响应时间: 3分钟
  • 运行成本: 40元/MWh

4. 电网交互 🏗️

  • 最大购电: 1000MW
  • 最大售电: 500MW
  • 售电价格: 95%市场电价
  • 双向调节: 支持购售电灵活切换

🎯 优化目标与约束

优化目标

系统以总运行成本最小化为目标,综合优化:

min: 发电成本 + 储能成本 + 可调负荷成本 + 电网交易成本 - 售电收入

主要约束

  1. 电力平衡约束: 供需实时平衡
  2. 设备容量约束: 各设备运行在额定范围内
  3. 储能SOC约束: 储能荷电状态限制
  4. 机组爬坡约束: 燃气机组最小出力约束
  5. 可调负荷约束: 冷热机调节范围约束
  6. 电网交易限制: 购售电功率上限

📚 详细数学建模

📖 完整的优化建模说明: 优化建模文档

包含详细的目标函数、约束条件、决策变量等数学公式和建模方法说明。

📈 输出结果

调度策略输出

  • 发电计划: 各时段光伏、风电、燃气机组出力
  • 🔋 储能策略: 充放电功率和SOC变化
  • 🏭 负荷调节: 冷机、热机功率调节策略
  • 🔌 电网交易: 购售电计划和交易量

分析报告

  • 📊 经济性分析: 成本结构、收益分析、投资回报
  • 📈 技术指标: 可再生能源渗透率、自给自足率、设备利用率
  • 📋 运行报告: 详细的系统运行总结和建议

可视化图表

  • 📉 发电资源出力曲线
  • ⚖️ 负荷与供应平衡图
  • 🔋 储能充放电策略图
  • 🏭 可调负荷运行状态图
  • 💰 电价变化和成本结构图

📊 典型运行结果

基于24小时优化调度的典型结果:

能源供需结构

  • 总负荷需求: 1,259.8 MWh
  • 可再生能源发电: 665.8 MWh (49.1%渗透率)
  • 可调负荷参与: 207.0 MWh (16.4%参与率)
  • 自给自足率: 100%

经济性表现

  • 净运行成本: 464,960元
  • 平均供电成本: 369.08元/MWh
  • 可调负荷成本: 9,660元
  • 年化运行成本: 约1.7亿元

系统性能

  • 可再生能源利用率: 高效消纳
  • 储能系统效率: 需优化调度策略
  • 负荷响应能力: 35MW可调容量
  • 电网交易平衡: 134.18 MWh净购电

📊 关键技术指标

通过可视化结果可以清晰看到:

  • 🌞 光伏发电: 日间高效发电,峰值达到额定容量
  • 💨 风力发电: 全天候稳定出力,提供基础电力供应
  • ⚡ 燃气机组: 灵活调节,在可再生能源不足时及时补充
  • 🔋 储能系统: 削峰填谷,优化电力供需匹配
  • 🏭 可调负荷: 冷机和热机智能参与需求侧响应
  • 🔌 电网交互: 双向功率流,实现经济优化运行

💡 提示: 图表数据基于真实的优化算法计算结果,反映了虚拟电厂在实际运行中的调度策略和经济效益。

🔍 使用场景

适用领域

  • 🏭 工业园区: 多能源协调调度和成本优化
  • 🏢 商业综合体: 冷热电联供系统优化
  • 🌆 智慧城市: 区域能源管理和需求响应
  • 电力市场: 虚拟电厂聚合资源参与市场交易
  • 🔬 科研院所: 能源系统优化算法研究

典型用户

  • 虚拟电厂运营商: 制定最优调度策略
  • 能源管理系统开发者: 算法验证和系统集成
  • 电力市场参与者: 交易策略制定和风险评估
  • 工业用户: 能源成本控制和需求侧管理

🛠️ 开发指南

扩展新的可调资源

  1. 配置文件扩展:
# config/system_config.yaml
adjustable_loads:
  new_device:
    rated_power_mw: 10
    operating_cost_yuan_mwh: 30
  1. 模型组件添加:
# src/models/vpp_model.py
def _create_adjustable_loads(self):
    # 添加新设备的建模逻辑
    new_device = solph.components.Sink(...)
  1. 结果分析更新:
# src/analysis/result_analyzer.py
# 添加新设备的结果提取和分析

自定义优化目标

可以通过修改oemof-solph模型来实现不同的优化目标:

  • 碳排放最小化
  • 可再生能源利用率最大化
  • 峰谷差最小化
  • 多目标权衡优化

⚠️ 注意事项

系统要求

  • 操作系统: Windows 10+, Linux, macOS
  • Python版本: 3.12或更高
  • 内存: 建议8GB以上
  • 处理器: 多核处理器,支持并行计算

求解器配置

  • CBC求解器已包含在项目中 (cbc/bin/cbc.exe)
  • 大规模问题建议使用商业求解器(Gurobi, CPLEX)
  • 求解时间可通过配置文件调整

性能优化建议

  • 适当调整时间段数量和模型复杂度
  • 使用多线程求解提升性能
  • 监控内存使用,避免内存不足

🐛 故障排除

常见问题

1. CBC求解器找不到

# 检查CBC路径
ls cbc/bin/cbc.exe

# 重新安装依赖
uv pip install -e .

2. 求解失败

  • 检查数据有效性
  • 调整求解器参数
  • 查看日志文件 logs/solver.log

3. 内存不足

  • 减少优化时间段
  • 简化模型约束
  • 增加虚拟内存

📝 许可证

MIT License - 详见 LICENSE 文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值