mmsegmentation 计算参数量(params)和计算量( FLOPs)

博客记录了mmsegmentation官方命令的用法。对命令进行简单分析,指出shape后接int类型,输入图片大小数字会返回特定元组,不输入–shape及参数则按2048*1024计算。实际操作中,使用512*512图片时输入512,后续还将研究参数计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这命令输入了好几次都错了,容易忘,记录一下用法

官方命令

python tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
得到结果:

==============================
Input shape: (3, 2048, 1024)
Flops: 1429.68 GMac
Params: 48.98 M
==============================

来源:mmsegmentation-常用工具

简单分析

在这里插入图片描述

  1. shape后跟着int类型,下面表示输入一个图片大小数字就会返回一个(3,shape,shape)的元组
  2. 如果不输入–shape及参数,就默认按照输入图片是2048*1024大小展开计算

实际操作

使用的图片是512*512,故输入512即可
python tools/get_flops.py xxx/config_path --shape 512

==============================
Input shape: (3, 512, 512)
Flops: 253.9 GFLOPs
Params: 64.29 M
==============================

mark一下,后面再细看怎么计算这些参数的

### 计算 YOLOv8 模型的参数数量与浮点运算次数 #### 参数量 (Parameters) 参数量是指模型中可训练权重的数量总。对于 YOLOv8 这样的深度学习模型,可以通过统计每一层(卷积层、全连接层等)中的权重矩阵大小来得到总的参数量。通常情况下,在 PyTorch 或 TensorFlow 中可以直接调用内置函数获取这一数值。 在 Python 的 PyTorch 实现中,可以使用如下代码计算参数量: ```python import torch.nn as nn from thop import profile def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) model = ... # 加载 YOLOv8 模型实例 params = count_parameters(model) print(f"Total Parameters: {params / 1e6:.2f}M") # 转换为百万单位表示 ``` 上述代码通过遍历 `model` 对象的所有张量并累加其元素总数得出最终结果[^2]。 #### 浮点运算次数 (FLOPs) 浮点运算次数反映了模型执行一次前向传播所需的计算工作量。它是一个重要的性能评估指标,尤其适用于资源受限环境下的部署场景分析。针对 YOLOv8,同样借助第三方工具如 **thop** 库能够便捷地完成此项任务。 以下是具体操作流程: ```python input_tensor = torch.randn(1, 3, 640, 640) # 假设输入分辨率为 640x640 macs, params = profile(model, inputs=(input_tensor,)) print(f"FLOPs: {macs / 1e9:.2f}G") # 将 MACs 转化成 GFLOPs 表达形式 ``` 这里需要注意的是,“MAC” “FLOP”的关系:一般而言,每次乘法累积操作计作两个 FLOP 即一倍于实际 MAC 数值[^1]^。 综上所述,利用以上两种方式即可分别求得 YOLOv8 的 Params 及对应的 GFLops 数据用于进一步研究比较不同架构间的效率差异等问题探讨之中[^3]。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值