目录 1. 任务要求 2. 数据集 3. 实现算法 3.1 目标实现 3.2 Tiny images representation 3.3 SIFT特征词袋表示 3.4 相关算法 4. 实验结果 4.1 基础结果展示 4.2 算法超参的影响 4.2.1 Tiny images size 4.2.2 Vocabulary size 4.3 其他结果 5. 源代码 1. 任务要求 输入:给定测试集图片,预测在15个场景中的类别。 任务: 实现Tiny images representation。 实现最近邻分类器nearest neighbor classifier。 实现SIFT特征词袋表示 输出: 针对Tiny images representation 和SIFT 词袋表示,报告每个类别的准确度和平均准确度。 对这两种方案,对正确和错误的识别结果挑出示例进行可视化。 探索不同的参数设置对结果的影响,总结成表格。 通过实验讨论词汇量的大小对识别分类结果的影响,比如哪个类别的识别准确率最高/最低,原因是什么。 2. 数据集 http://www.cad.zju.edu.cn/home/gfzhang/course/cv/Homework3.zip