快速幂

所谓的快速幂,其目的是为了快速求幂,将时间复杂度从朴素算法的O(n)降到O(logn)。

假如现在要求 a^b,按照朴素算法,就是将a连乘b次,时间复杂度为O(b),即O(n)级别。

在这里插入图片描述
是一个将指数不断除以2,底数不断乘方的过程(指数为奇数要变成偶数)。

举例:
在这里插入图片描述

int quick_pow(int a, int b) {
	int ans = 1, base = a;
	while (b) {
		if (b & 1) {
			ans = ans * base;
		}
		base = base * base;
		b >>= 1;
	}
	return ans;
}

快速幂取模

// time:O(logN)
// 这里不考虑指数为负数的情况
int pow_mod(int a, int b, int c) {
    int ans = 1, base=a;	// ans:结果;base:底数
    base = base % c;
    // 考虑0次方的情况
    if(b==0) {
        return 1 % c;	// 任意a的0次幂都是1,故直接用1%c即可 
    } 
    while(b) {   
        if(b & 1) // 与运算,判断奇偶性
        	ans = (ans * base) % c; 
   
        base = (base * base) % c; 
        b = b >> 1;		// 右移一位,相当于除2
    } 
    return ans;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值