海绵波波107
务必要疯狂地拥抱雄心,同时要疯狂地真诚
Gitcode地址:https://gitcode.com/qq_43920838
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
WOFOST作物模型(2.1):模型参数介绍
目录一、参数列表一、参数列表名称英文全称类别描述单位CFETcorrection factor for evapotranspiration水利用蒸散校正因子-CVLefficiency conversion of assimilates into leaf dry matter同化物转化为生物量同化物转化为叶片干物质的效率kg/kgCVOefficiency conversion of assimilates into storage organ原创 2025-01-01 19:39:11 · 389 阅读 · 0 评论 -
WOFOST作物模型(3):敏感性分析
使用TAGP(Total Above Ground Production),地上总产量TSUM1,temperature sum from emergence to anthesis,萌发至开花所需温度TSUM2,temperature sum from anthesis to maturity,开花至成熟所需温度SPAN,life span of leaves growing at 35 Celsius,生长温度为35度时的叶龄。原创 2024-12-30 22:03:05 · 842 阅读 · 0 评论 -
WOFOST作物模型(4):(本地化校准)优化PCSE模型中的参数
ncalls为计算轮数,一共计算应该是TDWI*SPAN次,因为要把这些值的组合都试一遍。每次计算出RMSE的结果,如果模拟值与观测值更加接近,那么就保存这一对TDWI和SPAN的结果与最小的RMSE。使用不同TDWI、SPAN初始值的WOFOST在观测日的LAI观测与模拟值的RMSE作为损失函数。RMSE最小为2.939。RMSE的精准还得观测值精准,设置的范围合理。NLOPT会起初有一个猜想,这里我们用默认值,设置两个参数的上下边界和步长,一开始定义一个最小误差,并存储最佳的TDWI和SPAN的值。原创 2024-12-29 22:18:39 · 295 阅读 · 0 评论 -
PROSAIL反演LAI(三)精度改进方法
然而在测量中也存在误差,比如叶倾角在20-70的范围内比较合理,原数据中出现了很多9.546974,可能是异常值,应该删去之后再做统计。所以说查找表的质量也很重要,最好这些输入参数能针对自己的研究区进行一些采样,了解大概的一个最值范围,以及分布情况,是否统计上是正态分布还是均匀分布。0.1蓝+0.61近红+0.29红,0.55,相关性有0.57。用遥感绿+近红+红平方+蓝平方,0.775。0.1蓝+0.98近红+0.1红,0.53。用遥感绿+近红+红平方,0.62。用遥感绿+近红+新绿,0.71。原创 2024-12-26 19:22:07 · 316 阅读 · 0 评论 -
WOFOST作物模型(7):6.0.6版本的PCSE使用(多层水分平衡和SNOMIN碳氮模型的集成)
wofost81文件结构如上,其中所需的参数可从github上获取然后input下有两个需要调用的功能函数py文件,需要拖到自己的运行py文件同级目录下在使用土壤模块SNOMIN进行作物生长模型模拟时,需要为土壤剖面的不同层次提供多种输入变量。这些变量通常不随年份变化,因此会统一在土壤文件中定义。本节将说明如何将这些输入变量整合到一个字典中,进而生成SNOMIN能够读取的土壤文件。原创 2024-07-11 20:20:07 · 396 阅读 · 0 评论 -
WOFOST作物模型(2.4):作物(冬小麦)参数.yaml初始化
官方给的作物参数是Potato土豆,如何使用Winterwheat冬小麦呢?原创 2024-07-16 01:02:08 · 307 阅读 · 0 评论 -
WOFOST作物模型(6):Web应用
参考链接。原创 2024-08-25 20:02:55 · 230 阅读 · 0 评论 -
WOFOST作物模型(2):输入数据驱动模型(气象、土壤、管理、作物)
将所需的参数文件(土壤、品种)导入。运行模型后,输出查看所有数据。原创 2024-03-19 18:55:18 · 150 阅读 · 0 评论 -
WOFOST作物模型(1):PCSE环境配置
get_summary_output() 方法通常用于在 PCSE 模拟过程结束后,获取模拟结果的摘要信息,例如模拟期间的总产量、总水分需求等。它可以提供对模拟结果的快速总结,方便用户进行后续的分析和处理。用.get_output来获取过程参数,并将这些参数转为dataframe显示。用run_till_terminate()代表终止。安装好之后,打开jupyter notebook。也可以指定运行时间,并获取最后一天的参数。首先还是打开之前建好的gee虚拟环境。原创 2024-03-18 18:29:42 · 396 阅读 · 0 评论 -
WOFOST作物模型(5.1):PCSE不同灌溉模式下的对比
三种灌溉模式分别是按日期灌溉、按物候阶段灌溉、按土壤水分阈值灌溉。当作物发育到0.9时,就进行浇灌。当土壤水分小于0.2时就进行浇灌。在不同灌溉模式下的LAI变化情况。原创 2024-08-23 20:10:56 · 324 阅读 · 0 评论 -
WOFOST作物模型(5.2):PCSE不同播种时间的对比
设置为2022年10月15日播种,然后每隔5天往后播种一次,然后探究播种时间对于作物各个长势的影响。原创 2024-08-23 23:13:55 · 159 阅读 · 0 评论 -
基于PIESDK的二次开发--土壤水反演系统
初始的.py代码参数是直接指定的,然而在封装后.exe获取输入参数和输出参数需要依靠外部赋予,所以这部分需要有改动。sys.argv依次来获取外部即将传入的参数,此处为何从1开始呢,因为sys.argv[0]代表算法本身。基于TVDI的土壤水分反演需要有地表温度和植被指数数据,该部分参考。在修改好参数输入方式后,可以进行封装。在代码目录中打开cmd。原创 2024-03-16 17:22:41 · 284 阅读 · 2 评论 -
GEE计算CWSI作物缺水指数
CWSI指数(作物水分胁迫指数,Crop Water Stress Index)是一种用来评估植物水分状况的指标。它主要基于植物叶片温度与空气温度之间的差异来评估植物的水分胁迫状况。CWSI指数的值通常在0到1之间,值越高说明植物的水分胁迫越严重。具体来说:CWSI接近0:这表明植物处于良好的水分状态,没有显著的水分胁迫。植物能够从土壤中吸收足够的水分进行正常的生长和光合作用。CWSI接近1:这表示植物处于严重的水分胁迫状态。原创 2024-07-22 17:46:12 · 1054 阅读 · 1 评论 -
GEE计算遥感生态指数RSEI
归一化是通过 unitScale 方法完成的,该方法根据之前计算的最小和最大值将波段的像素值缩放到0到1的范围。归一化是将图像的像素值缩放到一个标准范围(通常是0到1)的过程,这有助于在不同图像或数据集之间进行比较和处理。合并归一化波段:最后,函数使用 toBands() 方法将所有归一化的波段重新组合成一个单一的图像,并使用 rename(img.bandNames()) 方法将波段重命名为原始波段名称。该函数用于将图像的每个波段归一化到0到1的范围,基于在ROI内计算的最小和最大值。原创 2024-07-04 16:43:47 · 2782 阅读 · 1 评论 -
水云模型去除植被覆盖影响反演土壤水
水云模型(Water Cloud Model,WCM)是一种常用于雷达反演的模型,用于描述雷达回波信号在大气和地表之间的相互作用。水云模型假设雷达回波信号由水滴和云/雾颗粒散射以及地面散射组成,通过模拟这些散射过程来推断云和降水的特性。水云模型通常使用雷达反射率因子(Reflectivity Factor,Z)来描述雷达回波信号的强度,其单位为 dBZ。水云模型将雷达回波信号分解为不同的散射成分,包括大气散射、云/雾散射和地面散射。原创 2024-03-13 19:43:00 · 1631 阅读 · 8 评论 -
USLE模型(1.1):P因子的计算
10是耕地,且庆阳市坡度10-15度左右,所以赋给了3(最好再下个DEM计算一下,这里就统一用经验值了);20、30是林地草地,赋给10;30是灌木丛,赋给9;50是湿地,相当于水田吧,赋给2;60、80、90是水体、建设用地和荒地,赋给0;100是雪地,赋给0。对于已有的10种土地类型代码,需要按水土保持措施P值表进行重分类。按该标准分出了5类,然后P因子是0-1的值。首先需要下载土地利用类型数据集,查看。因此再在栅格计算器中除以10。原创 2024-03-03 11:10:42 · 2204 阅读 · 0 评论 -
USLE模型(2):土壤侵蚀量化评估
其中的几个因子都在文献范围内,说明计算结果并未出错,可能就是研究区正常范围和结果。现在计算土壤侵蚀,将几个前期制作好的因子的TIFF文件,用栅格计算器相乘。根据之前的文章,已经算出了R、K、LS、C、P。发现局部地区存在轻度侵蚀,大部分区域是微度侵蚀。原创 2024-03-03 21:53:16 · 319 阅读 · 0 评论 -
USLE模型(1.2):LS因子的计算
基于USLE的甘南川西北土壤侵蚀研究。准备好30米分辨率的dem。原创 2024-03-01 22:46:37 · 2471 阅读 · 2 评论 -
USLE模型(1.3):C因子的计算
首先得到FVC,并用掩膜提取研究区。最后导出为TIFF保存。原创 2024-03-03 09:32:03 · 1749 阅读 · 2 评论 -
USLE模型(1.4):R因子的计算
然后把12个月的降水量都放进去。原创 2024-03-03 12:35:29 · 1202 阅读 · 0 评论 -
USLE模型(1.5):K因子的计算
根据上述公式需要先准备好以下土壤类型数据:有机碳、砂粒、粉砂、粘粒。1.0000-Float(“甘肃_砂粒.tif”)/100.000。K因子计算完毕,范围在0.2-0.3。原创 2024-03-03 20:27:21 · 1115 阅读 · 0 评论 -
随机森林提取冬小麦地
再做一次上面勾选的操作,勾选建筑、道路、山地等非冬小麦像元,也导出为csv,标签列设为0。将标签像元波段导出为CSV后,经调整后(删除非波段信息),标签列(E)设为1。然后将两个表格内容整合在一起。这样就预处理好了训练数据。0,4对应的是波段,查看CSV中波段从第几列开始。5061对应的是训练数据的行数,有多少条训练数据。先在影像上勾选感兴趣区,只选取冬小麦地的像元。代码这几个部分需要根据自己的训练文件调整。原创 2024-02-29 18:56:04 · 1312 阅读 · 0 评论 -
GDAL计算NDWI及水体提取
本文参考NDWI(Normalized Difference Water Index)是一种用于遥感图像中水体检测的指数,它基于水体对于近红外(NIR)和绿色波段的不同吸收特性。计算NDWI的公式如下:其中:NIR 是近红外波段的反射值。G 是绿色波段的反射值。NDWI 的计算结果范围通常在 -1 到 1 之间。较高的值表示可能为水体,而较低的值则表示非水体区域。原创 2024-02-28 11:22:39 · 928 阅读 · 0 评论 -
GDAL计算NDVI及常用函数介绍
在这个示例中,首先通过 gdal.Open() 方法打开了一个栅格数据文件,并将打开方式设置为 gdal.GA_Update,以便进行写操作。然后,通过 GetRasterBand() 方法获取了第一个波段,并在进行写操作后调用了 FlushCache() 方法,将缓存中的数据刷新到磁盘中的栅格数据文件。在这个示例中,首先通过 gdal.Open() 方法打开了一个栅格数据文件。FlushCache() 是 GDAL 中 RasterBand 对象的一个方法,用于将缓存中的数据刷新到磁盘中的栅格数据文件。原创 2024-02-28 10:51:00 · 417 阅读 · 0 评论 -
PROSAIL反演LAI(二)基于查找表的反演
首先我们使用gf-1数据有四个波段,使用其他高光谱会有几十个波段,但并不是所有波段都需要选用,lai对于不同波段的响应不同。根据上一节的敏感性分析结果,可以发现,400-500,600-700的两个波段对于LAI敏感性更大,因此选取这两个波段数据。然后ndvi与lai也有极大相关的关系,因此再计算一个ndvi指数来选取。原创 2024-02-04 14:42:47 · 811 阅读 · 2 评论 -
Python封装tvdi算法为exe并读取xml
在代码中写的读取xml位置是.exe同级目录,因此要把.exe从dist中拿出来和.xml放在一起,然后再放入两个输入文件,名字对应xml和代码。lstpath = str(inputs_para_value[1])分别读取xml中inputs的两个 .\ndvi.tif。解析了xml中对应的输入输出路径,最后再读取输入文件运行自己的算法部分,xml文件见下面。代码中inputs = root.find(“.//Inputs”)对应xml中。在.py文件和.xml文件所在的文件夹中,输入cmd。原创 2024-01-18 09:49:36 · 417 阅读 · 0 评论 -
Landsat计算TVDI进行干旱监测(二)
下面的操作步骤在GEE平台中完成,首先需要注册一个谷歌账号并创建自己的GEE项目。原创 2024-01-10 12:47:56 · 2301 阅读 · 0 评论 -
地表温度计算(二)--Landsat8 Collection2 level2数据集
1、反演好的lst中有一些空缺部分,那是去除了云层遮蔽后的效果。如果是南方地区经常阴雨多云,可以将时间步长设置的长一点,这样来填补空缺。在代码中修改.filterDate(‘2023-05-05’, ‘2023-05-10’)的时间部分2、GEE平台的计算效率非常快,可以从ENVI处理慢慢转到该平台上来。3、地表温度一般计算下来>空气温度,太阳直射一般在城区的盛夏季都能达到60多,范围很高还有可能是局部异常值,比如停车场摆放的车辆(钢铁导热)。原创 2024-01-10 11:18:02 · 4404 阅读 · 4 评论 -
Landsat计算TVDI进行干旱监测(一)
由于OLI波段分辨率为30M,因此NDVI也是30M,而热红外为100M,一般来说需要将NDVI重采样至100M。预先下载了研究区13景的Landsat8和9的影像,该影像有10个波段,其中1-9为可见光波段(30m),10-11为热红外波段(100m)。4、0.81-0.1:重度干旱区,植被生长受到严重影响,大量植物枯死,植被覆盖度显著降低。3、0.61-0.8:中度干旱区,植被受到较严重的影响,叶片黄化、生长减缓等症状明显。把NDVI放入ARCGIS中,由于颜色映射的关系,全是黑色的,调整一下。原创 2024-01-08 17:14:52 · 1528 阅读 · 0 评论 -
地表温度计算(一)--劈窗算法
主要使用HJ-2(环境减灾二号卫星)的IRS传感器的两个热红外波段,以及红波段与近红波段计算得到的NDVI,使用劈窗算法,得到地表温度值。(本篇待更新)原创 2023-12-22 21:00:02 · 1577 阅读 · 0 评论 -
WOFOST作物模型(2.3):定义管理(灌溉、施肥)参数
目前问题在于灌溉量的确定,河北省的农民一般何时灌,灌多少?而且每块地不同农民的农艺做法不一样。在agromanager.py中有详细的信息(如何设置灌溉以及施肥量)找到了PCSE包中田间管理文件的标准写法。在没有设置灌溉时,土壤水分模拟结果如下。原创 2023-12-20 16:06:42 · 574 阅读 · 0 评论 -
WOFOST作物模型(8):集合卡尔曼滤波详解
具体来说,这段代码中的H是一个单位矩阵,obs是一个观测向量,P_e是一个误差协方差矩阵,R_e是一个观测噪声协方差矩阵。其中,0.31是正态分布的均值,0.03是正态分布的标准差,ensemble_size是生成的随机数的数量。然后对于该日的观测值,假定获取的观测值也是一个平均值,其有10%左右的观测误差,因此把标准差设置为0.01*每一个观测值。A为原先模拟值的矩阵,D为观测值的矩阵,观测与模拟值的差值,乘上卡尔曼增益,最后加上原有的模型模拟值。得到了融合了观测值后的新状态值,称为同化值。原创 2023-11-22 12:21:26 · 583 阅读 · 0 评论 -
关于SNAP的Biophysical Processor模块的计算准确率以及大厂10月种植情况
SNAP的这个模块基于PROSAIL物理模型反演。不得不说,还是挺准的,这一时期的LAI确实是0。冬小麦在10月份播种,刚播种下去,农田与裸地几乎无差别,因此部分农田以及所有城镇都是0值,少数农田是0.几,可能刚长苗,或者计算有些许误差。之前在反演8月底玉米的叶面积指数时,一般为3-4左右,而这个阶段的冬小麦LAI为0-1之间,对比来看觉得还是准确的。在处理河北省2022年的10月6日影像,使用SNAP的Biophysical Processor计算LAI时。发现很多农田地块出现了缺失值,但其实就是0值。原创 2023-11-04 16:48:52 · 391 阅读 · 0 评论 -
WOFOST作物模型(2.2):土壤数据制备过程
然后需要计算饱和土的水力传导率,使用SPAW软件来计算,计算得到饱和土导水率是0.54in/hr,in是英寸,hr是每小时。而pcse的土壤参数文件单位是cm每天,存在一个单位转换问题。随后打开Spatial Analyst工具中的提取分析-按掩膜提取,将研究区裁剪出来。有效水容量=田间持水量-凋萎点,29.2-14.2=15.0。.mdb文件在access中转成.xls格式。连接刚刚的mdb转好的.xls数据。Arcgis打开.bil文件。大厂的石灰性雏形土是最多的。将平面的图变换到地球表面上。原创 2023-11-01 22:37:49 · 344 阅读 · 0 评论 -
WOFOST作物模型(2.1):(气象数据)大厂回族自治县逐日气象数据集制作
此办法提供了Python操作excel简化人力的例子,相比起纯手动,提高了效率。不过仍然有优化的空间,而且数据来源也是大厂周边(北京站点)气象数据,评论区留下建议交流讨论。原创 2023-06-29 17:30:54 · 356 阅读 · 1 评论 -
哨兵1号后向散射系数土壤水分反演
打开之前预处理之后的VH和VV极化的后向散射系数转存的tiff文件。原创 2023-10-18 09:47:12 · 2703 阅读 · 5 评论 -
Prosail反演LAI(一)查找表构建
首先需要1、MATLAB ,我用的是R2021b3、ARTMO。原创 2023-07-24 14:41:31 · 2428 阅读 · 21 评论