剑指 Offer 10- II. 青蛙跳台阶问题

本文介绍了青蛙跳台阶问题,包括标准版本和变态版本的动态规划解决方案。在标准版本中,青蛙每次可以跳1级或2级台阶,通过动态规划公式f(x) = f(x-1) + f(x-2)来计算不同台阶的跳法。在变态版本中,青蛙可以跳任意级台阶,解法同样基于动态规划,公式变为f(n) = 2 * f(n-1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指 Offer 10- II. 青蛙跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2

示例 2:

输入:n = 7
输出:21

示例 3:

输入:n = 0
输出:1

提示:

0 <= n <= 100

动态规划

f ( x ) f(x) f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值