摘要
在过去十几年中,随着深度学习的兴起和发展,出现了稳定的创新和突破势头,令人信服地推动了多媒体领域视觉和语言之间的跨模态分析的发展。然而,还没有一个开源代码库来支持以统一和模块化的方式训练和部署用于跨模态分析的众多神经网络模型。在这项工作中,提出了X-modaler——一种多功能、高性能的代码库,它将最先进的跨模态分析封装到几个通用阶段(例如预处理、编码器、跨模态交互、解码器和解码策略)。每个阶段都有功能,涵盖了一系列在最新技术中广泛采用的模块,并允许在这些模块之间无缝切换。这种方式自然能够灵活地实现图像字幕、视频字幕和视觉语言预训练的最新算法,旨在促进研究界的快速发展。同时,由于几个阶段(例如,跨模态交互)的有效模块化设计在不同的视觉语言任务中共享,X-modaler可以简单地扩展到跨模态分析中的其他任务的启动原型,包括视觉问答、视觉常识推理和跨模态检索。
程序代码:https://github.com/YehLi/xmodaler
一、动机和创新点Motivation & Innovation
1、动机:在过去十几年中,随着深度学习的兴起和发展,出现了稳定的创新和突破势头,令人信服地推动了多媒体领域视觉和语言之间的跨模态分析的发展。然而,还没有一个开源代码库来支持以统一和模块化的方式训练和部署用于跨模态分析的众多神经网络模型。
2、创新点:
(1)X-modaler是第一个开源代码库,它统一了跨模态分析的综合高质量模块;
(2)X-modaler以标准化和用户友好的方式,为图像字幕、