最短路径问题(Dijkstra算法和Foloyd算法)

本文介绍了Dijkstra算法和Floyd算法在解决最短路径问题中的应用。Dijkstra算法适用于单源最短路径,通过不断扩充顶点集合找到最短特殊通路。Floyd算法则通过迭代计算所有顶点间的最短路径,其效率优于对每个顶点都使用Dijkstra算法。文中还提供了算法的具体描述和测试数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.两算法的用途
Dijkstra算法 一般用于单源最短通路问题
Foloyd算法一般用于所有顶点之间的最短通路

2.Dijkstra算法

设置并不断扩充一个顶点集合S∈v(G).一个顶点属于S当且仅当从源到该顶点的通路及距离已求出,初始时,S中仅含有源.
设v∈V(G),我们把从源到。且中间只经过S中顶点的通路称为源到。的特殊通路,并且用数组D来记录当前源到每个顶点所对应的最短特殊通路长度.由于每条边上的权都是非负实数,所以可以求出源到每个顶点的最短特殊通路长.如果v不属于 S且v是当前V(G)- S中具有最短特殊通路的点,则把v添加到s中,同时对数组D作必要修改,一旦S =V(G),则算法结束,这时D就记录了从源到每个其他顶点的最短涌路长度.
Dijkstra算法描违如下:其中输人的赋权图是简图G,V(G)={12.,*,n}, 1是源,C[i,j]表示边e=ij上的权,当顶点1与不邻接时,令C[i,j] ,D[i]表示当前源到顶点i的最短特殊通略的长度,

  Pou edure Dijkotna;

  计算从顶点I到其他每一个顶点的最短通路长度
  begin

  (1) 5m{1};

  (2) forim2 tondo

  (3) D[1mC[1,1↓  {初始化D}(4) forimI ton-I do begin

  看3(5)从V-8中选取个顶点使得D[w]最小: 

  (6)将w加人到S中:

  (7)对每个顶点veV-S执行;

  (8) D["min{D[v, D[w] +e[w,n}}end

  end; {Dijkstra}

以此图为例以此图为例

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值