1.两算法的用途
Dijkstra算法 一般用于单源最短通路问题;
Foloyd算法一般用于所有顶点之间的最短通路。
2.Dijkstra算法
设置并不断扩充一个顶点集合S∈v(G).一个顶点属于S当且仅当从源到该顶点的通路及距离已求出,初始时,S中仅含有源.
设v∈V(G),我们把从源到。且中间只经过S中顶点的通路称为源到。的特殊通路,并且用数组D来记录当前源到每个顶点所对应的最短特殊通路长度.由于每条边上的权都是非负实数,所以可以求出源到每个顶点的最短特殊通路长.如果v不属于 S且v是当前V(G)- S中具有最短特殊通路的点,则把v添加到s中,同时对数组D作必要修改,一旦S =V(G),则算法结束,这时D就记录了从源到每个其他顶点的最短涌路长度.
Dijkstra算法描违如下:其中输人的赋权图是简图G,V(G)={12.,*,n}, 1是源,C[i,j]表示边e=ij上的权,当顶点1与不邻接时,令C[i,j] ,D[i]表示当前源到顶点i的最短特殊通略的长度,
Pou edure Dijkotna;
计算从顶点I到其他每一个顶点的最短通路长度
begin
(1) 5m{1};
(2) forim2 tondo
(3) D[1mC[1,1↓ {初始化D}(4) forimI ton-I do begin
看3(5)从V-8中选取个顶点使得D[w]最小:
(6)将w加人到S中:
(7)对每个顶点veV-S执行;
(8) D["min{D[v, D[w] +e[w,n}}end
end; {Dijkstra}
以此图为例