pytorch损失值nan或者model输出nan或者inf的相关问题

本文探讨了在模型训练过程中可能遇到的问题及解决办法,包括优化器设置、学习率调整、梯度爆炸预防等,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现象和原因分析

在能确定模型正常的情况下,可能是优化器没有设置正确,一定要加上weight decay的正则化项,和时间衰减的学习率;
也有可能是学习率太大,梯度爆炸

也可以添加权重初始化项

optimizer = torch.optim.SGD(model.parameters(), lr=params.LR, weight_decay=0.00001)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=params.LR_steps, gamma=params.Lr_mul)
# gamma是每次的乘以学习率的系数


for epoch in range(epochs):
	lr_scheduler.step() # 更新学习率
	for images,targets in train_loader:
	
		# 计算loss
		loss = clf_loss + distil_loss
	    optimizer.zero_grad()
	    loss.backward()
	    optimizer.step()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值