参考文献:代码随想录
本文主要提供代码,具体思路见链接
1.什么是回文子串
aaa(全部都一样), ababa(正念和反念都一样)
2.什么是最长回文子串
如ababa回文子串 aba, bab, ababa 长度最长的就是咯
3.什么是最长回文子序列
如cbbac 如果去掉a 变成cbbc那就是回文子串还是最长的回文子串
4.动态规划注意事项
dp[i][j] 具体含义?????
dp[i][j]初始值?????初始值类型 boolean/int !!!!!
dp[i][j]推导公式?????由推到公式选择行列的遍历方向!!!!!是否需要多余的存储单元!!!!!
重复一下哈,这里只是记录代码
回文子串(来自代码随想录)(假设字符串不为空)
//动态 回文子串
//1.求回文子串个数
//2.求最长回文子串具体内容
public static int countSubstrings(String s){
if(s == null || s.length() ==0)
return 0;
int ans = 0;
boolean[][] flag = new boolean[s.length()][s.length()];
//行要倒数(从下到上) 列正好数(从左往右) j>=i 只填充右上角矩阵
for(int i = flag.length-1; i >= 0;i--){
for(int j = i;j < flag.length;j++){
//当s.charAt(i) != s.charAt(j) 短路执行
if(s.charAt(i) == s.charAt(j) && (j - i <=1 || flag[i+1][j-1] == true)) {
flag[i][j] = true;
ans++;
}
}
}
return ans;
}
知道一个字符串是不是回文子串了,那最长的回文子串只需要稍微加工(得到回文子串的起始下标和终止下标):
//动态 回文子串
//1.求回文子串个数
//2.求最长回文子串具体内容
public static int countSubstrings(String s){
if(s == null || s.length() ==0)
return 0;
int ans = 0;
//最长的回文子串
String ans_substring = "";
boolean[][] flag = new boolean[s.length()][s.length()];
//行要倒数(从下到上) 列正好数(从左往右) j>=i 只填充右上角矩阵
for(int i = flag.length-1; i >= 0;i--){
for(int j = i;j < flag.length;j++){
//当s.charAt(i) != s.charAt(j) 短路执行
if(s.charAt(i) == s.charAt(j) && (j - i <=1 || flag[i+1][j-1] == true)) {
flag[i][j] = true;
int len = j-i +1;
//实时更新
if(len > ans_substring.length())
ans_substring = s.substring(i,j+1);
ans++;
}
}
}
System.out.println("最长回文子串具体内容:"+ans_substring);
return ans;
}
最长子序列
注意多了一行和一列 //flag[i][j] = flag[i+1][j-1] + 2;
还多了对不相等情况的判断
//动态 回文子序列
public static int countXulie(String s){
if(s == null || s.length() ==0)
return 0;
//在计算最后一行时 涉及到i+1行 所以要多一行一列
int[][] flag = new int[s.length()+1][s.length()+1];
//行要倒数(从下到上) 列正好数(从左往右) j>=i 只填充右上角矩阵
for(int i = flag.length-1; i >= 0;i--){
//初始化对角线
flag[i][i] = 1;
//注意j的初始值 j < flag.length -1 多了一行
for(int j = i+1;j < flag.length -1;j++){
//当s.charAt(i) != s.charAt(j) 短路执行
if(s.charAt(i) == s.charAt(j)) {
flag[i][j] = flag[i+1][j-1] + 2;
}else{
flag[i][j] = flag[i][j] = Math.max(flag[i + 1][j], flag[i][j - 1]);
}
}
}
return flag[0][s.length()-1];
}