LeetCode 53. 最大子序和(DP详解)

这篇博客介绍了如何使用动态规划解决LeetCode 53题,即寻找给定整数数组的最大子序和。通过解题思路的阐述,包括以数组节点、子序列长度和子序列结束点为基础的遍历方式,重点讲解了动态规划的状态转移方程:dp[i] = Math.max(nums[i], dp[i-1] + nums[i])。博客提供了两种实现代码,思路相同。" 104141669,9177077,FreeRTOS操作系统任务详解,"['操作系统', 'FreeRTOS', '任务', '调度']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode 53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:


输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

解题思路

解答DP问题少不了使用递归遍历,而通常使用的遍历子序列方式有三种:
以数组[a,b,c,d]为例

  • 以某个节点为开头遍历:如以a节点为开头,就是[a],[a, b],[ a, b, c],[a,b,c,d]。
  • 以子序列的长度为基准,如遍历长度为2的子序列。
  • 以子序列的结束节点为基准遍历,如:以c为结束点的所有子序列:[a,b,c], [b, c], [ c ]。

而在DP问题中,经常使用第三种遍历方式。例如本题,需找到连续数组的最大子序和,也可以理解为找到最大子序列的结束位置,而结束位置怎么找呢?可以先找到结束位置的前一个位置不就行了,而前一个位置有需要先找到再前一个位置…以每个位置为终点的最大子序和都是基于前一位置的最大子序和得出的

base case就是元素只有一个时,res = nums[0]。
状态转移方程:dp[i] = Math.max(nums[i],dp[i-1]+nums[i]);
每次比较以i为结束点时,前(i-1)个数的最大子序和加上nums[i]的和 与 nums[i]的大小。

实现代码

代码1

class Solution {
    /*
        DP问题:
            每次寻找最大的子序和可以先找
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值