目录
什么是数据建模
-
数据建模,是创建数据模型的过程
-
数据建模是对真实世界进行抽象描述的一种工具和方法,实现对现实世界的映射.
-
博客/作者/用户评论
-
-
三个过程:概念模型=>逻辑模型=>数据模型(第三范式)
-
数据模型:结合具体的数据库,在满足业务读写性能等需求的前提下,确定最终的定义
-
-
数据建模: 功能需求 + 性能需求
如何对字段进行建模
- 确定字段类型--->是否需要搜索及分词--->是否需要聚合及排序--->是否需要额外的存储
字段类型
字段类型 Text VS Keyword
-
Text
-
用于全文本字段,文本会被Analyzer分词
-
默认不支持聚合分析及排序.需要设置fielddata为true
-
-
Keyword
-
用于id,枚举及不需要分词的文本.例如电话号码,email地址,手机号码,邮政编码,性别等
-
适用于Filter(精确匹配),Sorting和Aggregations
-
-
设置多字段类型
-
默认会为文本类型设置成text,并且设置一个keyword的子字段
-
在处理认类语言时,通过增加"英文","拼音"和"标准"分词器,提高搜索结构
-
字段类型:结构化数据
-
数值类型
-
尽量选择贴近的类型.例如可以用byte,就不要用long
-
-
枚举类型
-
设置为keyword.即便是数字,也应该设置成keyword.获取更加好的性能
-
-
其他
-
日期 /布尔 / 地理信息
-
搜索及分词
-
如不需要检索,排序和聚合分析
-
Enable设置成false
-
-
如不需要检索
-
index设置成false
-
-
对需要检索的字段,可以通过如下配置,设定存储粒度
-
index_options /Norms : 不需要归一化数据时,可以关闭
-
聚合及排序
-
如不需要检索,排序和聚合分析
-
Enable设置成false
-
-
如不需要排序或者聚合分析功能
-
Doc_values / fielddata设置成false
-
-
更新频繁,聚合查询频繁的keyword类型的字段
-
推荐将eager_global_ordinals设置成true
-
额外的存储
-
是否需要专门存储当前字段数据
-
Store设置成true,可以存储该字段的原始内容
-
一般结合_source的enabl为false时候使用
-
-
Disable_source:节约磁盘(source的信息不需要在磁盘上做一个保存);适用于指标型数据(指标型文档不需要做任何的更新操作)
-
一般先考虑增加压缩比
-
无法看到_source字段,无法做Reindex,无法Update
-
一个数据建模的实例
优化字段设定
- 图书索引
- 书名:支持全文和精确匹配
- 简介:支持全文
- 作者:精确值
- 发行日期:日期类型
- 图书封面:精确值(因为没有必要对封面进行搜索所以可以有额外的设置:(1)如果index设置为false,不支持搜索,支持Terms聚合;(2)如果将enabled设为false,则无法进行搜索和聚合分析)
#添加数据,dynamic Mapping
PUT books/_doc/1
{
"title": "Mastering ElasticSearch 5.0",
"description": "Master the searching, indexing, and aggregation features in ElasticSearch Improve users’ search experience with Elasticsearch’s functionalities and develop your own Elasticsearch plugins",
"author": "Bharvi Dixit",
"public_date": "2017",
"cover_url": "https://images-na.ssl-images-amazon.com/images/I/51OeaMFxcML.jpg"
}#查看Maping
GET books/_mapping
#手动设置mapping:"index": false则不能通过该字段进行索引,数据还是会出现在_source中
PUT books
{
"mappings": {
"properties": {
"author": {
"type": "keyword"
},
"cover_url": {
"type": "keyword",
"index": false
},
"description": {
"type": "text"
},
"public_date": {
"type": "date"
},
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 100
}
}
}
}
}
}#Cover URL index 设置成false,无法对该字段进行搜索
POST books/_search
{
"query": {
"term": {
"cover_url": {
"value": "https://images-na.ssl-images-amazon.com/images/I/51OeaMFxcML.jpg"
}
}
}
}
#Cover URL index 设置成false,依然支持聚合分析
POST books/_search
{
"aggs": {
"cover": {
"terms": {
"field": "cover_url",
"size": 10
}
}
}
}
需求变更
-
新需求:增加图书内容的字段.并要求被搜索同时高亮显示
-
新需求会导致 _source 的内容过大(造成大量的存储空间的占用,数据在网络间传输的开销)
-
Source Filtering只是传输给客户端时进行过滤,Fetch数据时,ES节点还是会传输 _source中的数据
-
-
解决办法
-
关闭_source
-
然后将每个字段的"store"设置成true(数据被额外的存储在ES当中)
-
查询图书:解决字段过大引发的性能问题
-
返回结果不包含 _source字段
-
对于需要显示的信息,可以在查询中指定"stored_fields"
-
禁止_source字段后,还是支持使用highlightsAPI,高亮显示content中匹配的相关信息
#重现设定mapping文件,新增 Content字段。数据量很大。选择将Source 关闭
PUT books
{
"mappings": {
"_source": {
"enabled": false
},
"properties": {
"author": {
"type": "keyword",
"store": true
},
"cover_url": {
"type": "keyword",
"index": false,
"store": true
},
"description": {
"type": "text",
"store": true
},
"content": {
"type": "text",
"store": true
},
"public_date": {
"type": "date",
"store": true
},
"title": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 100
}
},
"store": true
}
}
}
}
PUT books/_doc/1
{
"title": "Mastering ElasticSearch 5.0",
"description": "Master the searching, indexing, and aggregation features in ElasticSearch Improve users’ search experience with Elasticsearch’s functionalities and develop your own Elasticsearch plugins",
"content": "The content of the book......Indexing data, aggregation, searching. something else. something in the way............",
"author": "Bharvi Dixit",
"public_date": "2017",
"cover_url": "https://images-na.ssl-images-amazon.com/images/I/51OeaMFxcML.jpg"
}
#查询结果中 source不包含数据
POST /books/_search
#搜索,通过store 字段显示数据,同时高亮显示 conent的内容
POST books/_search
{
"stored_fields": ["title","author","public_date"],
"query": {
"match": {
"content": "searching"
}
},"highlight": {
"fields": {
"content":{}
}
}
}
Mapping字段的相关设置
-
Mapping parameters | Elasticsearch Guide [8.1] | Elastic
-
Enabled -设置成false,仅作存储,不支持搜索和聚合分析(数据保存在_source中)
-
index -是否被倒排索引,设置成false,无法被搜索,但还是支持aggregation,并出现在_source中
-
Norms -如果字段用来做过滤和聚合分析,可以关闭,节约存储
-
Doc_values -是否启用doc_values,用于排序和聚合分析
-
Field_data -如果要对text类型启用排序和聚合分析,fielddata需要设置成true
-
Store -默认不存储,数据默认存储在_source
-
Coerce -默认开启,是否开启数据类型的自动切换 (例如,字符串转数字)
-
Multifields 多字段特性
-
Dynamic -true / false /strict 控制Mapping的自动更新
-