动态规划——求DAG中最长路径

1.问题描述

给定一个有向无环加权图,求图中的最长路径。
在这里插入图片描述
该图中的最长距离为14,即2->4->6->2。

2.问题解决

首先我们要对有向无环加权图进行拓扑排序。拓扑排序的意思简要来说就是将图中顶点和边排成一个线性序列,对于<vi, vj>,经拓扑排序后一定满足vi在vj的前面。

拓扑排序的实现方法:
首先找出图中入度为0的点加入拓扑排序后的序列,例子中为S,接着将<S, v>中顶点v的入度减一,例子中将点C和A的入度减一,此时顶点C的入度为0,将顶点C放入拓扑排序的序列,将从C出发与C相邻的点的入度减一。重复循环此过程,直到所有点都在拓扑排序后的序列中。

比如,例子中给出的DAG经拓扑排序后为:
在这里插入图片描述
我们考虑简单情况,即给定的图中入度为0的点只有一个,比如上图只有S点的入度为0。

根据拓扑排序后的图很容易得到递推关系式,用path(i)表示从入度为0的点到顶点 i 的最长路径,初始条件为path(S)=0。这里依据上图,给出两个具体的式子。
(1)path(E)=max{ path(D)+1, path(B)+2 }
(2)path(B)=path(A)+6
根据递推关系式以及拓扑排序后的顺序,依次求出从入度为0的点到各个点的最长路径,最后返回一个最大值即可。

3.代码实现

vector<int> Sort(vector<int>& in,vector<vector<int>>& edge)
{
   
    
    //数组in保存了每个顶点的入度,in[0]=0,无实际意义,方便操作
    vector<int> sort;//保存拓扑排序后的顶点顺序
    sort.push_back(0);//0并没有实际意义,只是为了方便操作

    while(sort.size()!=in.size())
    {
   
   
        for(int i=1;i<in.size(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值