文章目录
摘要
Spectral-based GNN方法借助了信号与系统中的傅里叶变换,定义了一套Spectral Graph Theory,用Discrete time Fourier basis体现频率与信号能量差距之间的关系,使用特征值等价频率,再构造傅里叶变换与逆傅里叶变换得到图神经网络的卷积输出。推导出方法存在的两个弊端,随后应用此方法的ChebNet与GCN优化了弊端,得到广泛使用的Model。
1 Fourier Transform
首先了解一下Almost Fourier Transform。如何让机器挑出一个信号的频率?将以时间为横轴、强度为纵轴的波形信号缠绕在一个单位圆上,关注两个变量:一个是信号的频率,每秒上下震荡 N N N次;另一个是图像缠绕中心圆的频率,每秒转 n n n圈。增大缠绕频率 n n n的大小,使信号缠绕得越来越快,也就是每秒转圈数 n n n越来越大,做一个二维平面上的缠绕图像,记录图像质心的位置变化。
先暂时只记录质心在x轴的位置变化,绘制图像,发现n逐渐变大,质心几乎只在原点附近移动;当在n=N附近时,质心会大幅度地远离原点,所以图像呈现出在n=N附近存在高峰。数值n就是信号的频率。这台机器可以识别复杂的波形,将其中的频率分离出来。
接下来是用数学公式描述将信号缠绕在中心圆上。“缠绕图像”的质心在二维平面上,需要记录两个轴的坐标,由于复数非常适合于描述与缠绕和旋转有关的事物,因此质心用一个复数表示。尤拉公式 e n u m ⋅ i e^{num\cdot i} enum⋅i表示落在单位圆沿逆时针方向走了num长的点上, g ( t ) e − 2 π i f t g(t)e^{-2\pi ift} g(t)e−2πift概括了整个将可变频率f缠绕起来的想法。质心具体位置由时间-强度信号图中抽取样本点、对应到缠绕图像上、取平均得到。如果取样的点越多,结果靠得越近,也就越准确。所以取极限,实际是把函数积分,再除以时间的长度。
Fourier Transform只是上式中的积分部分,其含义不再是质心,而是把它倍增。如果某个频率持续了很长时间,这个频率的傅里叶变换的模长就被放的很大。
2 Spectral-based GNN
2.1 整体思想
Spectral-based GNN的思想如图4所示。
2.2 Spectral Graph Theory
图5列出使用的符号与含义,定义Graph由 V , E V, E V,E表示,节点数量记为 N N N,adjacency matrix记录节点之间的相邻关系,degree matrix是一个对角矩阵、记录每一个节点的邻居数,定义Graph Laplacian L = D - A,再计算Laplacian矩阵的特征值与特征向量。
Discrete time Fourier basis,指频率越大,相邻两点之间的信号变化量就越大,用 f T L f = 1 2 ∑ v i ∈ V ∑ v j ∈ V w i , j ( f ( v i ) − f ( v j ) ) 2 f^TLf=\dfrac{1}{2}\displaystyle\sum_{v_i\in V}\displaystyle\sum_{v_j\in V}w_{i,j}\big(f(v_i)-f(v_j)\big)^2 fT