第七章 幂的运算
7.1同底数幂的乘法
am.an=am+na^m.a^n=a^{m+n}am.an=am+n
反向公式:am+n=am.an反向公式:a^{m+n}=a^m.a^n反向公式:am+n=am.an
同底数相乘,底数不变,指数相加
容易出错的地方:
(−x)n的底为−x;−xn的底是x(-x)^n的底为-x;-x^n的底是x(−x)n的底为−x;−xn的底是x
n是奇数时:(−x)n=−xn;(a−b)n=−(b−a)nn是奇数时:(-x)^n=-x^n;(a-b)^n=-(b-a)^nn是奇数时:(−x)n=−xn;(a−b)n=−(b−a)n
n是偶数时:(−x)n=xn;(a−b)n=(b−a)nn是偶数时:(-x)^n=x^n;(a-b)^n=(b-a)^nn是偶数时:(−x)n=xn;(a−b)n=(b−a)n
本节课通过5道练习题的解析,让大家掌握同底数幂乘法公式在各种常见题型中如何灵活使用,大家一定要用心体会何时应该使用同底数幂乘法公式进行简化式子;何时应该使用反向公式“复杂化”式子;不要忘了使用公式的前提是同底,不同底要化为同底。
1.【解】
(−a)3.a2.an=(−a)8(-a)^3.a^2.a^n=(-a)^8(−a)3.a2.an=(−a)8
=(−a)−3+2+n=(−a)8=(-a)^{-3+2+n}=(-a)^8=(−a)−3+2+n=(−a)8
∴(−a)n=−a3\therefore(-a)^n=-a^3∴(−a)n=−a3
2.【解】
(−2)99+(−2)100(-2)^{99}+(-2)^{100}(−2)99+(−2)100
=(−2)99+(−2)99×−2=(-2)^{99}+(-2)^{99}\times-2=(−2)99+(−2)99×−2
令x=(−2)99令x=(-2)^{99}令x=(−2)99
原式=x+x×−2原式=x+x\times-2原式=x+x×−2
合并同类项:x(1−2)=−2x合并同类项:x(1-2)=-2x合并同类项:x(1−2)=−2x
=(−2)99=(-2)^{99}=(−2)99
3.【解】
2x+2y=82^x+2^y=82x+2y=8
2x+2y=232^x+2^y=2^32x+2y=23
(0,3),(1,2),(2,1)(0,3),(1,2),(2,1)(0,3),(1,2),(2,1)
∴3x+3y=27\therefore3^x+3^y=27∴3x+3y=27
4.【解】
2x+1=2x−1+22^{x+1}=2^{x-1+2}2x+1=2x−1+2
=2x−1.22=2^{x-1}.2^2=2x−1.22
∵2x−1=6\because2^{x-1}=6∵2x−1=6
∴2x+1=6×22=6×4=24\therefore2^{x+1}=6\times2^2=6\times4=24∴2x+1=6×22=6×4=24
5.【解】
x.xa.x2a+1=x29x.x^a.x^{2a+1}=x^{29}x.xa.x2a+1=x29
1+a+(2a+1)=29
a=9