雷米兹交换算法(Remez Exchange Algorithm)的数学理论
引言
雷米兹交换算法(Remez Exchange Algorithm)是数值逼近理论中的核心算法,其理论基础建立在19世纪切比雪夫(Chebyshev)的开创性工作之上。
第一章 切比雪夫逼近的理论基础
1.1 切比雪夫多项式的定义与性质
第一类切比雪夫多项式 Tn(x)T_n(x)Tn(x) 在区间 [−1,1][-1,1][−1,1] 上通过如下方式定义:
Tn(x)=cos(narccosx),x∈[−1,1]T_n(x) = \cos(n \arccos x), \quad x \in [-1,1]Tn(x)=cos(narccosx),x∈[−1,1]
这一定义可以通过参数化得到更直观的理解。令 x=cosθx = \cos\thetax=cosθ,则有:
Tn(cosθ)=cos(nθ)T_n(\cos\theta) = \cos(n\theta)Tn(cosθ)=cos(nθ)
通过三角恒等式,我们可以推导出递推关系。从 cos((n+1)θ)+cos((n−1)θ)=2cosθcos(nθ)\cos((n+1)\theta) + \cos((n-1)\theta) = 2\cos\theta\cos(n\theta)cos((n+1)θ)+cos((n−1)θ)=2cosθcos(nθ) 出发,得到:
Tn+1(x)=2xTn(x)−Tn−1(x)T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)Tn+1(x)=2xTn(x)−Tn−1(x)
其中初始条件为 T0(x)=1T_0(x) = 1T0(x)=1,T1(x)=xT_1(x) = xT1(x)=x。
1.2 切比雪夫多项式的极值性质
定理 1.1(切比雪夫多项式的极小偏差性质) 在所有首项系数为1的 nnn 次多项式中,21−nTn(x)2^{1-n}T_n(x)21−nTn(x) 在 [−1,1][-1,1][−1,1] 上具有最小的一致范数。
证明: 设 pn(x)=xn+an−1xn−1+⋯+a0p_n(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0pn(x)=xn+an−1xn−1+⋯+a0 是任意首项系数为1的 nnn 次多项式。考虑 Tn(x)=2n−1xn+低次项T_n(x) = 2^{n-1}x^n + \text{低次项}Tn(x)=2n−1xn+低次项,因此 21−nTn(x)2^{1-n}T_n(x)21−nTn(x) 是首项系数为1的多项式。
切比雪夫多项式在 [−1,1][-1,1][−1,1] 上恰好有 n+1n+1n+1 个极值点:
xk=cos(kπn),k=0,1,…,nx_k = \cos\left(\frac{k\pi}{n}\right), \quad k = 0, 1, \ldots, nxk=cos(nkπ),k=0,1,…,n
在这些点上,Tn(xk)=(−1)kT_n(x_k) = (-1)^kTn(xk)=(−1)k,因此:
maxx∈[−1,1]∣21−nTn(x)∣=21−n\max_{x \in [-1,1]} |2^{1-n}T_n(x)| = 2^{1-n}x∈[−1,1]max∣21−nTn(x)∣=21−n
假设存在另一个首项系数为1的多项式 qn(x)q_n(x)qn(x) 使得:
maxx∈[−1,1]∣qn(x)∣<21−n\max_{x \in [-1,1]} |q_n(x)| < 2^{1-n}x∈[−1,1]max∣qn(x)∣<21−n
考虑差函数 r(x)=21−nTn(x)−qn(x)r(x) = 2^{1-n}T_n(x) - q_n(x)r(x)=21−nTn(x)−qn(x)。由于两个多项式的首项系数都是1,所以 r(x)r(x)r(x) 是次数不超过 n−1n-1n−1 的多项式。
在极值点 xkx_kxk 处,我们有:
r(xk)=21−nTn(xk)−qn(xk)=21−n(−1)k−qn(xk)r(x_k) = 2^{1-n}T_n(x_k) - q_n(x_k) = 2^{1-n}(-1)^k - q_n(x_k)r(xk)=21−nTn(xk)−qn(xk)=21−n(−1)k−qn(xk)
由于 ∣qn(xk)∣<21−n|q_n(x_k)| < 2^{1-n}∣qn(xk)∣<21−n,所以 r(xk)r(x_k)r(xk) 的符号由 (−1)k(-1)^k(−1)k 决定,即 r(x)r(x)r(x) 在这 n+1n+1n+1 个点上交替变号。根据中间值定理,r(x)r(x)r(x) 在相邻极值点之间至少有一个零点,因此至少有 nnn 个零点。
但 r(x)r(x)r(x) 是次数不超过 n−1n-1n−1 的多项式,最多只能有 n−1n-1n−1 个零点(除非 r≡0r \equiv 0r≡0)。这一矛盾证明了定理。
1.3 正交性与切比雪夫级数展开
切比雪夫多项式在权函数 w(x)=(1−x2)−1/2w(x) = (1-x^2)^{-1/2}w(x)=(1−x2)−1/2 下满足正交性:
∫−11Tm(x)Tn(x)dx1−x2={0若 m≠nπ若 m=n=0π/2若 m=n≠0\int_{-1}^{1} T_m(x)T_n(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} 0 & \text{若 } m \neq n \\ \pi & \text{若 } m = n = 0 \\ \pi/2 & \text{若 } m = n \neq 0 \end{cases}∫−11Tm(x)Tn(x)1−x2dx=⎩⎨⎧0ππ/2若 m=n若 m=n=0若 m=n=0
证明: 使用变量替换 x=cosθx = \cos\thetax=cosθ,dx=−sinθdθdx = -\sin\theta d\thetadx=−sinθdθ:
∫−11Tm(x)Tn(x)dx1−x2=∫π0cos(mθ)cos(nθ)−sinθdθsinθ=∫0πcos(mθ)cos(nθ)dθ\int_{-1}^{1} T_m(x)T_n(x) \frac{dx}{\sqrt{1-x^2}} = \int_{\pi}^{0} \cos(m\theta)\cos(n\theta) \frac{-\sin\theta d\theta}{\sin\theta} = \int_{0}^{\pi} \cos(m\theta)\cos(n\theta) d\theta∫−11Tm(x)Tn(x)1−x2dx=∫π0cos(mθ)cos(nθ)sinθ−sinθdθ=∫0πcos(mθ)cos(nθ)dθ
利用三角恒等式 cos(mθ)cos(nθ)=12[cos((m+n)θ)+cos((m−n)θ)]\cos(m\theta)\cos(n\theta) = \frac{1}{2}[\cos((m+n)\theta) + \cos((m-n)\theta)]cos(mθ)cos(nθ)=21[cos((m+n)θ)+cos((m−n)θ)],积分可以直接计算得出结果。
第二章 最佳一致逼近的存在性与唯一性
2.1 问题的数学表述
设 C[a,b]C[a,b]C[a,b] 表示区间 [a,b][a,b][a,b] 上所有连续函数构成的空间,赋予一致范数:
∥f∥∞=maxx∈[a,b]∣f(x)∣\|f\|_\infty = \max_{x \in [a,b]} |f(x)|∥f∥∞=x∈[a,b]max∣f(x)∣
设 Πn\Pi_nΠn 表示次数不超过 nnn 的所有实多项式构成的子空间。对于给定的 f∈C[a,b]f \in C[a,b]f∈C[a,b],最佳逼近问题是寻找 pn∗∈Πnp_n^* \in \Pi_npn∗∈Πn 使得:
∥f−pn∗∥∞=infp∈Πn∥f−p∥∞=:En(f)\|f - p_n^*\|_\infty = \inf_{p \in \Pi_n} \|f - p\|_\infty =: E_n(f)∥f−pn∗∥∞=p∈Πninf∥f−p∥∞=:En(f)
2.2 存在性定理
定理 2.1 对于任意 f∈C[a,b]f \in C[a,b]f∈C[a,b],最佳逼近多项式 pn∗p_n^*pn∗ 存在。
证明: 定义集合:
S={p∈Πn:∥f−p∥∞≤∥f∥∞+1}S = \{p \in \Pi_n : \|f - p\|_\infty \leq \|f\|_\infty + 1\}S={p∈Πn:∥f−p∥∞≤∥f∥∞+1}
显然 SSS 非空(取 p=0p = 0p=0 即可)。对于 p∈Sp \in Sp∈S,考虑多项式的标准基表示:
p(x)=∑k=0nckxkp(x) = \sum_{k=0}^{n} c_k x^kp(x)=k=0∑nckxk
由于 ∥f−p∥∞≤∥f∥∞+1\|f - p\|_\infty \leq \|f\|_\infty + 1∥f−p∥∞≤∥f∥∞+1,对所有 x∈[a,b]x \in [a,b]x∈[a,b] 有:
∣p(x)∣≤∣f(x)∣+∥f−p∥∞≤2∥f∥∞+1|p(x)| \leq |f(x)| + \|f - p\|_\infty \leq 2\|f\|_\infty + 1∣p(x)∣≤∣f(x)∣+∥f−p∥∞≤2∥f∥∞+1
这表明系数 {ck}\{c_k\}{ck} 是有界的。实际上,通过在 n+1n+1n+1 个不同点上的插值条件,可以得到:
∣ck∣≤Mk(2∥f∥∞+1)|c_k| \leq M_k(2\|f\|_\infty + 1)∣ck∣≤Mk(2∥f∥∞+1)
其中 MkM_kMk 是仅依赖于 nnn 和区间 [a,b][a,b][a,b] 的常数。
因此,SSS 可以视为 Rn+1\mathbb{R}^{n+1}Rn+1 中的有界闭集。定义函数 Φ:Πn→R\Phi: \Pi_n \to \mathbb{R}Φ:Πn→R 为:
Φ(p)=∥f−p∥∞\Phi(p) = \|f - p\|_\inftyΦ(p)=∥f−p∥∞
我们需要证明 Φ\PhiΦ 在 SSS 上达到其下确界。
步骤1: 证明 Φ\PhiΦ 是连续的。对于 p1,p2∈Πnp_1, p_2 \in \Pi_np1,p2∈Πn,有:
∣Φ(p1)−Φ(p2)∣=∣∥f−p1∥∞−∥f−p2∥∞∣≤∥p1−p2∥∞|\Phi(p_1) - \Phi(p_2)| = |\|f - p_1\|_\infty - \|f - p_2\|_\infty| \leq \|p_1 - p_2\|_\infty∣Φ(p1)−Φ(p2)∣=∣∥f−p1∥∞−∥f−p2∥∞∣≤∥p1−p2∥∞
由于多项式空间 Πn\Pi_nΠn 上所有范数等价,存在常数 C>0C > 0C>0 使得:
∥p∥∞≤C∑k=0n∣ck∣\|p\|_\infty \leq C \sum_{k=0}^{n} |c_k|∥p∥∞≤Ck=0∑n∣ck∣
因此 Φ\PhiΦ 关于系数是连续的。
步骤2: 由 Weierstrass 定理,连续函数在紧集上达到其最小值。取极小化序列 {pm}⊂S\{p_m\} \subset S{pm}⊂S 使得:
limm→∞∥f−pm∥∞=infp∈Πn∥f−p∥∞\lim_{m \to \infty} \|f - p_m\|_\infty = \inf_{p \in \Pi_n} \|f - p\|_\inftym→∞lim∥f−pm∥∞=p∈Πninf∥f−p∥∞
由于 {pm}\{p_m\}{pm} 的系数有界,存在收敛子序列 {pmk}\{p_{m_k}\}{pmk} 收敛到某个 p∗∈Πnp^* \in \Pi_np∗∈Πn。由 Φ\PhiΦ 的连续性:
∥f−p∗∥∞=limk→∞∥f−pmk∥∞=infp∈Πn∥f−p∥∞\|f - p^*\|_\infty = \lim_{k \to \infty} \|f - p_{m_k}\|_\infty = \inf_{p \in \Pi_n} \|f - p\|_\infty∥f−p∗∥∞=k→∞lim∥f−pmk∥∞=p∈Πninf∥f−p∥∞
因此 p∗p^*p∗ 是最佳逼近。
2.3 唯一性定理
定理 2.2 最佳逼近多项式 pn∗p_n^*pn∗ 是唯一的。
证明: 假设存在两个不同的最佳逼近 p1,p2∈Πnp_1, p_2 \in \Pi_np1,p2∈Πn,即:
∥f−p1∥∞=∥f−p2∥∞=En(f)\|f - p_1\|_\infty = \|f - p_2\|_\infty = E_n(f)∥f−p1∥∞=∥f−p2∥∞=En(f)
考虑它们的平均值 pavg=p1+p22p_{avg} = \frac{p_1 + p_2}{2}pavg=2p1+p2。显然 pavg∈Πnp_{avg} \in \Pi_npavg∈Πn。
对于任意 x∈[a,b]x \in [a,b]x∈[a,b]:
∣f(x)−pavg(x)∣=∣f(x)−p1(x)+p2(x)2∣=∣(f(x)−p1(x))+(f(x)−p2(x))2∣|f(x) - p_{avg}(x)| = \left|f(x) - \frac{p_1(x) + p_2(x)}{2}\right| = \left|\frac{(f(x) - p_1(x)) + (f(x) - p_2(x))}{2}\right|∣f(x)−pavg(x)∣=f(x)−2p1(x)+p2(x)=2(f(x)−p1(x))+(f(x)−p2(x))
由三角不等式:
∣f(x)−pavg(x)∣≤∣f(x)−p1(x)∣+∣f(x)−p2(x)∣2≤En(f)+En(f)2=En(f)|f(x) - p_{avg}(x)| \leq \frac{|f(x) - p_1(x)| + |f(x) - p_2(x)|}{2} \leq \frac{E_n(f) + E_n(f)}{2} = E_n(f)∣f(x)−pavg(x)∣≤2∣f(x)−p1(x)∣+∣f(x)−p2(x)∣≤2En(f)+En(f)=En(f)
因此 ∥f−pavg∥∞≤En(f)\|f - p_{avg}\|_\infty \leq E_n(f)∥f−pavg∥∞≤En(f),这表明 pavgp_{avg}pavg 也是最佳逼近。
现在考虑集合:
A1={x∈[a,b]:∣f(x)−p1(x)∣=En(f)}A_1 = \{x \in [a,b] : |f(x) - p_1(x)| = E_n(f)\}A1={x∈[a,b]:∣f(x)−p1(x)∣=En(f)}
A2={x∈[a,b]:∣f(x)−p2(x)∣=En(f)}A_2 = \{x \in [a,b] : |f(x) - p_2(x)| = E_n(f)\}A2={x∈[a,b]:∣f(x)−p2(x)∣=En(f)}
由于 p1p_1p1 和 p2p_2p2 都是最佳逼近,A1A_1A1 和 A2A_2A2 都非空。如果 p1≠p2p_1 \neq p_2p1=p2,则存在 x0∈[a,b]x_0 \in [a,b]x0∈[a,b] 使得 p1(x0)≠p2(x0)p_1(x_0) \neq p_2(x_0)p1(x0)=p2(x0)。
情况1: 如果 x0∈A1∩A2x_0 \in A_1 \cap A_2x0∈A1∩A2,则 f(x0)−p1(x0)=±En(f)f(x_0) - p_1(x_0) = \pm E_n(f)f(x0)−p1(x0)=±En(f) 且 f(x0)−p2(x0)=±En(f)f(x_0) - p_2(x_0) = \pm E_n(f)f(x0)−p2(x0)=±En(f)。由于 p1(x0)≠p2(x0)p_1(x_0) \neq p_2(x_0)p1(x0)=p2(x0),这两个等式不能同时成立,矛盾。
情况2: 如果存在 x1∈A1∖A2x_1 \in A_1 \setminus A_2x1∈A1∖A2,则 ∣f(x1)−p1(x1)∣=En(f)|f(x_1) - p_1(x_1)| = E_n(f)∣f(x1)−p1(x1)∣=En(f) 但 ∣f(x1)−p2(x1)∣<En(f)|f(x_1) - p_2(x_1)| < E_n(f)∣f(x1)−p2(x1)∣<En(f)。此时:
∣f(x1)−pavg(x1)∣<En(f)+En(f)2=En(f)|f(x_1) - p_{avg}(x_1)| < \frac{E_n(f) + E_n(f)}{2} = E_n(f)∣f(x1)−pavg(x1)∣<2En(f)+En(f)=En(f)
这与 pavgp_{avg}pavg 是最佳逼近矛盾。
通过详细分析所有情况,可以证明必须有 p1=p2p_1 = p_2p1=p2。
第三章 等振荡定理的完整证明
3.1 定理的精确表述
定理 3.1(Chebyshev-Remez 等振荡定理) 设 f∈C[a,b]f \in C[a,b]f∈C[a,b],p∗∈Πnp^* \in \Pi_np∗∈Πn。则 p∗p^*p∗ 是 fff 的最佳一致逼近当且仅当存在至少 n+2n+2n+2 个点 a≤x0<x1<⋯<xn+1≤ba \leq x_0 < x_1 < \cdots < x_{n+1} \leq ba≤x0<x1<⋯<xn+1≤b 使得:
f(xi)−p∗(xi)=(−1)iσEn(f),i=0,1,…,n+1f(x_i) - p^*(x_i) = (-1)^i \sigma E_n(f), \quad i = 0, 1, \ldots, n+1f(xi)−p∗(xi)=(−1)iσEn(f),i=0,1,…,n+1
其中 σ=±1\sigma = \pm 1σ=±1,En(f)=∥f−p∗∥∞E_n(f) = \|f - p^*\|_\inftyEn(f)=∥f−p∗∥∞。
3.2 必要性的证明
假设 p∗p^*p∗ 是最佳逼近。定义误差函数:
e(x)=f(x)−p∗(x)e(x) = f(x) - p^*(x)e(x)=f(x)−p∗(x)
设 M={x∈[a,b]:∣e(x)∣=En(f)}M = \{x \in [a,b] : |e(x)| = E_n(f)\}M={x∈[a,b]:∣e(x)∣=En(f)} 是误差达到最大值的点集。
引理 3.1 如果 p∗p^*p∗ 是最佳逼近,则对于任意 q∈Πnq \in \Pi_nq∈Πn,存在 x0∈Mx_0 \in Mx0∈M 使得:
e(x0)⋅q(x0)≥0e(x_0) \cdot q(x_0) \geq 0e(x0)⋅q(x0)≥0
引理证明: 反证法。假设对所有 x∈Mx \in Mx∈M 都有 e(x)⋅q(x)<0e(x) \cdot q(x) < 0e(x)⋅q(x)<0。考虑扰动:
pε(x)=p∗(x)+εq(x)p_\varepsilon(x) = p^*(x) + \varepsilon q(x)pε(x)=p∗(x)+εq(x)
对于 x∈Mx \in Mx∈M:
∣f(x)−pε(x)∣=∣e(x)−εq(x)∣|f(x) - p_\varepsilon(x)| = |e(x) - \varepsilon q(x)|∣f(x)−pε(x)∣=∣e(x)−εq(x)∣
由于 e(x)⋅q(x)<0e(x) \cdot q(x) < 0e(x)⋅q(x)<0,当 ε>0\varepsilon > 0ε>0 足够小时:
∣e(x)−εq(x)∣<∣e(x)∣=En(f)|e(x) - \varepsilon q(x)| < |e(x)| = E_n(f)∣e(x)−εq(x)∣<∣e(x)∣=En(f)
由 MMM 的紧性和 qqq 的连续性,存在 δ>0\delta > 0δ>0 使得对所有 x∈Mx \in Mx∈M:
∣e(x)−εq(x)∣≤En(f)−δ|e(x) - \varepsilon q(x)| \leq E_n(f) - \delta∣e(x)−εq(x)∣≤En(f)−δ
对于 x∉Mx \notin Mx∈/M,∣e(x)∣<En(f)|e(x)| < E_n(f)∣e(x)∣<En(f)。由连续性,当 ε\varepsilonε 足够小时:
∣e(x)−εq(x)∣<En(f)|e(x) - \varepsilon q(x)| < E_n(f)∣e(x)−εq(x)∣<En(f)
这表明 ∥f−pε∥∞<En(f)\|f - p_\varepsilon\|_\infty < E_n(f)∥f−pε∥∞<En(f),与 p∗p^*p∗ 的最优性矛盾。
主要证明的继续:
定义线性泛函 L:Πn→RL: \Pi_n \to \mathbb{R}L:Πn→R:
L(q)=∑x∈M+q(x)−∑x∈M−q(x)L(q) = \sum_{x \in M^+} q(x) - \sum_{x \in M^-} q(x)L(q)=x∈M+∑q(x)−x∈M−∑q(x)
其中 M+={x∈M:e(x)=En(f)}M^+ = \{x \in M : e(x) = E_n(f)\}M+={x∈M:e(x)=En(f)},M−={x∈M:e(x)=−En(f)}M^- = \{x \in M : e(x) = -E_n(f)\}M−={x∈M:e(x)=−En(f)}。
由引理 3.1,对所有 q∈Πnq \in \Pi_nq∈Πn 有 L(q)≥0L(q) \geq 0L(q)≥0。如果对某个 q0∈Πnq_0 \in \Pi_nq0∈Πn 有 L(q0)>0L(q_0) > 0L(q0)>0,则 L(−q0)<0L(-q_0) < 0L(−q0)<0,矛盾。因此 L≡0L \equiv 0L≡0。
这意味着 Πn\Pi_nΠn 的零空间包含整个 Πn\Pi_nΠn,而 Πn\Pi_nΠn 是 (n+1)(n+1)(n+1) 维的。由 Riesz 表示定理,LLL 可以表示为至多 n+1n+1n+1 个点测度的线性组合。但我们已经证明 LLL 需要在 M+M^+M+ 和 M−M^-M− 上都有支撑,且符号相反。
通过更精细的分析(使用 Haar 条件),可以证明必须存在至少 n+2n+2n+2 个交替符号的点。完整的证明需要考虑各种退化情况,这里略去技术细节。
3.3 充分性的证明
假设存在 n+2n+2n+2 个点 {xi}i=0n+1\{x_i\}_{i=0}^{n+1}{xi}i=0n+1 满足等振荡条件。我们需要证明 p∗p^*p∗ 是最佳逼近。
假设存在 q∈Πnq \in \Pi_nq∈Πn 使得 ∥f−q∥∞<En(f)=∥f−p∗∥∞\|f - q\|_\infty < E_n(f) = \|f - p^*\|_\infty∥f−q∥∞<En(f)=∥f−p∗∥∞。
考虑差函数 r(x)=p∗(x)−q(x)∈Πnr(x) = p^*(x) - q(x) \in \Pi_nr(x)=p∗(x)−q(x)∈Πn。在等振荡点上:
r(xi)=p∗(xi)−q(xi)=[f(xi)−q(xi)]−[f(xi)−p∗(xi)]r(x_i) = p^*(x_i) - q(x_i) = [f(x_i) - q(x_i)] - [f(x_i) - p^*(x_i)]r(xi)=p∗(xi)−q(xi)=[f(xi)−q(xi)]−[f(xi)−p∗(xi)]
由等振荡条件:
f(xi)−p∗(xi)=(−1)iσEn(f)f(x_i) - p^*(x_i) = (-1)^i \sigma E_n(f)f(xi)−p∗(xi)=(−1)iσEn(f)
由于 ∣f(xi)−q(xi)∣≤∥f−q∥∞<En(f)|f(x_i) - q(x_i)| \leq \|f - q\|_\infty < E_n(f)∣f(xi)−q(xi)∣≤∥f−q∥∞<En(f),我们有:
sign(r(xi))=sign([f(xi)−q(xi)]−(−1)iσEn(f))=−(−1)iσ\text{sign}(r(x_i)) = \text{sign}([f(x_i) - q(x_i)] - (-1)^i \sigma E_n(f)) = -(-1)^i \sigmasign(r(xi))=sign([f(xi)−q(xi)]−(−1)iσEn(f))=−(−1)iσ
这表明 r(x)r(x)r(x) 在 n+2n+2n+2 个点上严格交替变号,因此在相邻点之间至少有 n+1n+1n+1 个零点。但 r(x)∈Πnr(x) \in \Pi_nr(x)∈Πn 最多只能有 nnn 个零点(除非 r≡0r \equiv 0r≡0)。
如果 r≡0r \equiv 0r≡0,则 p∗=qp^* = qp∗=q,与 ∥f−q∥∞<∥f−p∗∥∞\|f - q\|_\infty < \|f - p^*\|_\infty∥f−q∥∞<∥f−p∗∥∞ 矛盾。
因此不存在这样的 qqq,证明 p∗p^*p∗ 确实是最佳逼近。
第四章 雷米兹算法的理论分析
4.1 算法的数学描述
雷米兹算法通过迭代更新参考点集来逼近最优解。设第 kkk 次迭代的参考点集为 X(k)={x0(k),…,xn+1(k)}X^{(k)} = \{x_0^{(k)}, \ldots, x_{n+1}^{(k)}\}X(k)={x0(k),…,xn+1(k)}。
步骤1: 求解线性系统以获得试验多项式 p(k)p^{(k)}p(k) 和误差水平 h(k)h^{(k)}h(k):
[1x0(k)⋯(x0(k))n−11x1(k)⋯(x1(k))n+1⋮⋮⋱⋮⋮1xn+1(k)⋯(xn+1(k))n(−1)n+1][a0(k)a1(k)⋮an(k)h(k)]=[f(x0(k))f(x1(k))⋮f(xn+1(k))]\begin{bmatrix} 1 & x_0^{(k)} & \cdots & (x_0^{(k)})^n & -1 \\ 1 & x_1^{(k)} & \cdots & (x_1^{(k)})^n & +1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n+1}^{(k)} & \cdots & (x_{n+1}^{(k)})^n & (-1)^{n+1} \end{bmatrix} \begin{bmatrix} a_0^{(k)} \\ a_1^{(k)} \\ \vdots \\ a_n^{(k)} \\ h^{(k)}\end{bmatrix}= \begin{bmatrix} f(x_0^{(k)}) \\ f(x_1^{(k)}) \\ \vdots \\ f(x_{n+1}^{(k)}) \end{bmatrix}11⋮1x0(k)x1(k)⋮xn+1(k)⋯⋯⋱⋯(x0(k))n(x1(k))n⋮(xn+1(k))n−1+1⋮(−1)n+1a0(k)a1(k)⋮an(k)h(k)=f(x0(k))f(x1(k))⋮f(xn+1(k))
步骤2: 计算误差函数 e(k)(x)=f(x)−p(k)(x)e^{(k)}(x) = f(x) - p^{(k)}(x)e(k)(x)=f(x)−p(k)(x) 并找到所有局部极值点。
步骤3: 选择使 ∣e(k)(x)∣|e^{(k)}(x)|∣e(k)(x)∣ 最大的 n+2n+2n+2 个点作为新的参考集 X(k+1)X^{(k+1)}X(k+1)。
4.2 de La Vallée Poussin 定理
定理 4.1 设 X={x0,…,xn+1}X = \{x_0, \ldots, x_{n+1}\}X={x0,…,xn+1} 是区间 [a,b][a,b][a,b] 上的 n+2n+2n+2 个不同点,ppp 是在这些点上等振荡插值于 fff 的多项式,误差水平为 hhh。则:
En(f)≥∣h∣E_n(f) \geq |h|En(f)≥∣h∣
证明: 假设存在 q∈Πnq \in \Pi_nq∈Πn 使得 ∥f−q∥∞<∣h∣\|f - q\|_\infty < |h|∥f−q∥∞<∣h∣。在参考点上:
f(xi)−p(xi)=(−1)ihf(x_i) - p(x_i) = (-1)^i hf(xi)−p(xi)=(−1)ih
考虑 r(x)=p(x)−q(x)r(x) = p(x) - q(x)r(x)=p(x)−q(x)。类似于等振荡定理的证明,r(x)r(x)r(x) 在参考点上交替变号,因此有至少 n+1n+1n+1 个零点。但 r∈Πnr \in \Pi_nr∈Πn,矛盾。
4.3 收敛性分析
定理 4.2 雷米兹算法生成的误差水平序列 {∣h(k)∣}\{|h^{(k)}|\}{∣h(k)∣} 单调递增且收敛到 En(f)E_n(f)En(f)。
证明: 设 p(k)p^{(k)}p(k) 是第 kkk 次迭代得到的多项式,h(k)h^{(k)}h(k) 是对应的误差水平。由算法构造:
- ∣h(k)∣≤∥f−p(k)∥∞|h^{(k)}| \leq \|f - p^{(k)}\|_\infty∣h(k)∣≤∥f−p(k)∥∞(因为 h(k)h^{(k)}h(k) 是在参考点上的误差)
- ∥f−p(k)∥∞≥∣h(k+1)∣\|f - p^{(k)}\|_\infty \geq |h^{(k+1)}|∥f−p(k)∥∞≥∣h(k+1)∣(因为新参考点选自误差最大的点)
结合 de La Vallée Poussin 定理:
En(f)≥∣h(k+1)∣≥∣h(k)∣E_n(f) \geq |h^{(k+1)}| \geq |h^{(k)}|En(f)≥∣h(k+1)∣≥∣h(k)∣
因此序列 {∣h(k)∣}\{|h^{(k)}|\}{∣h(k)∣} 单调递增且有上界 En(f)E_n(f)En(f),故收敛。
要证明极限确实是 En(f)E_n(f)En(f),假设 limk→∞∣h(k)∣=L<En(f)\lim_{k \to \infty} |h^{(k)}| = L < E_n(f)limk→∞∣h(k)∣=L<En(f)。由于多项式空间 Πn\Pi_nΠn 在任何范数下都是有限维完备的,存在子序列 {p(kj)}\{p^{(k_j)}\}{p(kj)} 收敛到某个 p∞∈Πnp_\infty \in \Pi_np∞∈Πn。
通过取极限和连续性论证,可以证明 p∞p_\inftyp∞ 满足等振荡条件且 ∥f−p∞∥∞=L\|f - p_\infty\|_\infty = L∥f−p∞∥∞=L。但这与 En(f)>LE_n(f) > LEn(f)>L 矛盾。
4.4 线性收敛速度
定理 4.3 在适当的非退化条件下,雷米兹算法具有线性收敛速度:
En(f)−∣h(k)∣≤CρkE_n(f) - |h^{(k)}| \leq C \rho^kEn(f)−∣h(k)∣≤Cρk
其中 0<ρ<10 < \rho < 10<ρ<1,C>0C > 0C>0 是常数。
证明需要用到强唯一性定理和算子理论,这里仅给出核心思想。定义算子 T:Πn→ΠnT: \Pi_n \to \Pi_nT:Πn→Πn,将多项式 ppp 映射到下一次迭代的多项式。可以证明在最佳逼近 p∗p^*p∗ 的邻域内,TTT 是压缩映射。
第五章 泛函分析视角
5.1 最佳逼近算子的性质
定义最佳逼近算子 Pn:C[a,b]→ΠnP_n: C[a,b] \to \Pi_nPn:C[a,b]→Πn:
Pnf=pn∗P_n f = p_n^*Pnf=pn∗
其中 pn∗p_n^*pn∗ 是 fff 的最佳一致逼近。
定理 5.1 最佳逼近算子具有以下性质:
- 投影性: Pn∘Pn=PnP_n \circ P_n = P_nPn∘Pn=Pn
- 保范性: ∥Pn∥=1\|P_n\| = 1∥Pn∥=1(当 Πn\Pi_nΠn 包含常函数时)
- 单调性: 若 f≤gf \leq gf≤g,则不一定有 Pnf≤PngP_n f \leq P_n gPnf≤Png(非线性性的体现)
5.2 Lebesgue 常数与稳定性
对于插值算子,Lebesgue 常数定义为:
Λn=maxf∈C[a,b],∥f∥∞=1∥Lnf∥∞\Lambda_n = \max_{f \in C[a,b], \|f\|_\infty = 1} \|L_n f\|_\inftyΛn=f∈C[a,b],∥f∥∞=1max∥Lnf∥∞
其中 LnfL_n fLnf 是在 Chebyshev 节点上的插值多项式。
定理 5.2 对于 Chebyshev 节点插值:
Λn=2πlogn+2π(γ+log8π)+o(1)\Lambda_n = \frac{2}{\pi} \log n + \frac{2}{\pi}\left(\gamma + \log\frac{8}{\pi}\right) + o(1)Λn=π2logn+π2(γ+logπ8)+o(1)
其中 γ\gammaγ 是 Euler 常数。
这一渐近公式表明,尽管 Λn→∞\Lambda_n \to \inftyΛn→∞,但增长速度是对数级的,这保证了相对良好的稳定性。
5.3 Jackson 定理与逼近速度
定理 5.3(Jackson 定理) 设 f∈C[a,b]f \in C[a,b]f∈C[a,b] 且 fff 有连续的 rrr 阶导数,则:
En(f)≤Crnrω(f(r),b−an)E_n(f) \leq \frac{C_r}{n^r} \omega(f^{(r)}, \frac{b-a}{n})En(f)≤nrCrω(f(r),nb−a)
其中 ω\omegaω 是连续模,CrC_rCr 是仅依赖于 rrr 的常数。
对于解析函数,逼近速度是指数级的:
定理 5.4 若 fff 在包含 [a,b][a,b][a,b] 的椭圆域 Eρ\mathcal{E}_\rhoEρ 内解析,则:
En(f)≤MρnE_n(f) \leq \frac{M}{\rho^n}En(f)≤ρnM
其中 MMM 是 fff 在 Eρ\mathcal{E}_\rhoEρ 上的最大值。