论文阅读——77GHz频段汽车雷达传感器的毫米波技术

77GHz频段汽车雷达传感器的毫米波技术

J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel and C. Waldschmidt, “Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band,” in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 845-860, March 2012, doi: 10.1109/TMTT.2011.2178427.

引言与背景

基于毫米波雷达传感器技术的驾驶辅助系统市场正在快速发展。在不久的将来,所有新推出的汽车型号都将配备基于雷达的系统,这将带来大规模生产和低成本潜力。汽车雷达传感器的毫米波技术已经从1999年第一代使用砷化镓Gunn二极管和分立肖特基二极管的传感器,发展到现在使用硅锗BiCMOS技术的高度集成化解决方案。

驾驶辅助系统可分为被动式和主动式两类。被动系统不会影响车辆运动本身,只在特定场景下起作用,如停车辅助,其中传感器仅向驾驶员提供信息。而主动系统可以直接影响车辆动力学,例如自适应巡航控制(ACC)系统可以自动加速或减速,紧急制动系统可以在检测到障碍物时自动刹车。

雷达的测量原理基于电磁波的传播特性。当频率为f的电磁波遇到移动目标时,反射信号会产生多普勒频移:

fd=2vrcf0=2vcos⁡θλf_d = \frac{2v_r}{c}f_0 = \frac{2v\cos\theta}{\lambda}fd=c2vrf0=λ2vcosθ

其中vr是径向速度,v是目标速度,θ是目标运动方向与雷达视线的夹角,λ是波长。这种多普勒效应使雷达能够直接测量目标的径向速度,这是雷达相对于其他传感器技术的独特优势。

图1 - 三种示例功能的视场和距离范围:该图展示了ACC(自适应巡航控制)、LCA(变道辅助)和CTA(交叉交通警报)三种典型应用场景的雷达覆盖范围。ACC需要250米的前向长距离覆盖,视角约为±8°;LCA需要覆盖车辆侧后方70米范围,视角更宽达±70°;CTA则需要监测车辆两侧的交叉交通,覆盖范围约40米,视角可达±80°。

频段选择与调制原理

频率分配与监管

汽车雷达主要使用两个频段:76-77GHz频段在全球范围内几乎都可用,而77-81GHz频段已在欧洲引入。频率选择对系统性能有根本性影响。天线的波束宽度与频率的关系为:

θ3dB=kλD=kcfD\theta_{3dB} = \frac{k\lambda}{D} = \frac{kc}{fD}θ3dB=D=fDkc

其中k是与天线类型相关的常数(矩形孔径约为51°,圆形孔径约为70°),D是天线孔径尺寸。对于相同的天线尺寸,77GHz相比24GHz可以获得约3倍更窄的波束宽度,这意味着更好的角分辨率。

距离分辨率由雷达带宽决定:

ΔR=c2B\Delta R = \frac{c}{2B}ΔR=2Bc

其中B是信号带宽。77-81GHz频段提供的4GHz带宽可实现3.75cm的理论距离分辨率,而24GHz频段的相对带宽限制使得实现如此高的绝对带宽变得困难。

图2 - 距离分辨率和角度分辨率示意图:图中展示了两个目标的距离分辨率ΔR和角度分辨率Δφ的定义。距离分辨率定义为区分径向距离上两个目标的能力,而角度分辨率定义为按角度区分两个目标的能力。根据瑞利准则,当两个点目标的主瓣峰值与另一个的第一零点重合时,认为它们刚好可分辨。

FMCW调制技术

图4 - FMCW调制原理:(a)显示了频率特性,频率在时间T内从f₁线性扫描到f₂,扫描带宽为Δf;(b)显示了基带信号,目标被映射到拍频fb。

线性调频连续波(FMCW)雷达的发射信号可表示为:

stx(t)=Atexp⁡(j2π(fct+μ2t2))s_{tx}(t) = A_t\exp\left(j2\pi\left(f_c t + \frac{\mu}{2}t^2\right)\right)stx(t)=Atexp(j2π(fct+2μt2))

其中fc是载波频率,μ = B/T是调频斜率。接收信号经过时延τ和多普勒频移后:

srx(t)=Arexp⁡(j2π(fc(t−τ)+μ2(t−τ)2+fdt))s_{rx}(t) = A_r\exp\left(j2\pi\left(f_c(t-\tau) + \frac{\mu}{2}(t-\tau)^2 + f_d t\right)\right)srx(t)=Arexp(j2π(fc(tτ)+2μ(tτ)2+fdt))

混频后的基带信号:

sIF(t)=AIFexp⁡(j2π(μτt−μτ22+fdt))s_{IF}(t) = A_{IF}\exp\left(j2\pi\left(\mu\tau t - \frac{\mu\tau^2}{2} + f_d t\right)\right)sIF(t)=AIFexp(j2π(μτt2μτ2+fdt))

忽略常数相位项,中频信号的频率为:

fIF=μτ+fd=2RBcT+2vrfccf_{IF} = \mu\tau + f_d = \frac{2RB}{cT} + \frac{2v_r f_c}{c}fIF=μτ+fd=cT2RB+c2vrfc

这表明中频包含了距离和速度信息的耦合。为了解耦,需要使用多个不同调频斜率的扫描,形成如下方程组:

[fIF1fIF2]=[μ11μ21][2R/cfd]\begin{bmatrix} f_{IF1} \\ f_{IF2} \end{bmatrix} = \begin{bmatrix} \mu_1 & 1 \\ \mu_2 & 1 \end{bmatrix} \begin{bmatrix} 2R/c \\ f_d \end{bmatrix}[fIF1fIF2]=[μ1μ211][2R/cfd]

雷达系统性能分析

雷达方程与链路预算

图3 - 车辆的实测单站RCS:该极坐标图显示了Mazda 6在77GHz频率下测量的雷达横截面。可以看到车辆四个侧面的四个最大值,超过30dBsm。

雷达接收功率的信噪比决定了检测性能。考虑接收机噪声,信噪比可以表示为:

SNR=PrkT0BFn=PtGtGrλ2σ(4π)3R4kT0BFnLSNR = \frac{P_r}{kT_0BF_n} = \frac{P_tG_tG_r\lambda^2\sigma}{(4\pi)^3R^4kT_0BF_nL}SNR=kT0BFnPr=(4π)3R4kT0BFnLPtGtGrλ2σ

其中k是玻尔兹曼常数,T₀是参考温度(290K),Fn是噪声系数,L是系统损耗。

检测概率Pd和虚警概率Pfa之间的关系由以下积分给出:

Pd=∫VT∞p(v∣s+n)dvP_d = \int_{V_T}^{\infty} p(v|s+n)dvPd=VTp(vs+n)dv

其中VT是检测门限,p(v|s+n)是存在信号时的概率密度函数。对于高斯噪声和非起伏目标,检测概率可以用误差函数表示:

Pd=12[1+erf(2SNR−erf−1(1−2Pfa)2)]P_d = \frac{1}{2}\left[1 + \text{erf}\left(\frac{\sqrt{2SNR} - \text{erf}^{-1}(1-2P_{fa})}{\sqrt{2}}\right)\right]Pd=21[1+erf(22SNRerf1(12Pfa))]

多目标场景分析

在实际交通场景中,雷达需要同时检测和跟踪多个目标。当N个目标同时存在时,接收信号为:

srx(t)=∑i=1NAiexp⁡(j2π(fbit+ϕi))s_{rx}(t) = \sum_{i=1}^{N} A_i\exp\left(j2\pi\left(f_{bi}t + \phi_i\right)\right)srx(t)=i=1NAiexp(j2π(fbit+ϕi))

其中每个目标产生不同的拍频fbi。通过FFT处理可以在频域分离这些目标,但需要考虑动态范围和频谱泄漏问题。

窗函数的使用可以降低频谱泄漏,但会展宽主瓣。对于汉明窗:

w(n)=0.54−0.46cos⁡(2πnN−1)w(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{N-1}\right)w(n)=0.540.46cos(N12πn)

主瓣展宽因子约为1.36,这意味着有效距离分辨率会相应降低。

毫米波前端技术

半导体技术发展

图5 - 半导体性能趋势:(a)显示了ITRS预测的晶体管速度和噪声系数趋势;(b)显示了SiGe双极晶体管的fT与集电极电流的关系。

晶体管的功率增益可以用Mason单边功率增益表示:

U=∣y21−y12∣24(Re[y11]Re[y22]−Re[y12y21])U = \frac{|y_{21} - y_{12}|^2}{4(\text{Re}[y_{11}]\text{Re}[y_{22}] - \text{Re}[y_{12}y_{21}])}U=4(Re[y11]Re[y22]Re[y12y21])y21y122

对于理想晶体管,最大振荡频率fmax与截止频率fT的关系为:

fmax=fT8πRbCbcf_{max} = \sqrt{\frac{f_T}{8\pi R_b C_{bc}}}fmax=8πRbCbcfT

其中Rb是基极电阻,Cbc是基极-集电极电容。这表明降低寄生参数对提高毫米波性能至关重要。

图6 - 四通道收发器芯片:(a)展示了收发器的框图,包含基频77GHz VCO、分频器链、四通道接收器;(b)显示了芯片显微照片,采用Infineon B7HF SiGe工艺制造。

混频器的转换增益和噪声系数是关键参数。Gilbert混频器的转换增益可以表示为:

Gc=2π⋅gmRL⋅cos⁡(πVLO2Vπ)G_c = \frac{2}{\pi} \cdot g_m R_L \cdot \cos\left(\frac{\pi V_{LO}}{2V_{\pi}}\right)Gc=π2gmRLcos(2VππVLO)

其中gm是跨导,RL是负载电阻,VLO是本振幅度,Vπ是完全切换所需的电压。

封装技术创新

图8 - PCB上的芯片引线键合:横截面图显示了带引线键合SiGe芯片的PCB结构。

键合线的电感可以近似为:

Lwire=0.2l[ln⁡(2ld)−0.75]L_{wire} = 0.2l\left[\ln\left(\frac{2l}{d}\right) - 0.75\right]Lwire=0.2l[ln(d2l)0.75]

其中l是线长(μm),d是线径(μm)。典型的1mm长、25μm直径金线的电感约为0.7nH,在77GHz时的感抗约为340Ω。

图9 - 倒装芯片安装图10 - eWLB封装横截面展示了先进封装技术。倒装芯片的焊球电感显著低于键合线:

Lbump=μ0h2πln⁡(4hd−1)L_{bump} = \frac{\mu_0 h}{2\pi}\ln\left(\frac{4h}{d} - 1\right)Lbump=2πμ0hln(d4h1)

其中h是焊球高度,d是焊球直径。典型值约为0.05nH,比键合线低一个数量级。

图11 - eWLB封装和PCB封装照片:展示了封装尺寸仅8×8mm²的紧凑设计。

图12 - eWLB封装中集成的天线:天线直接在再分布层实现,避免了毫米波信号的封装转换损耗。

天线系统架构

天线理论基础

天线增益与有效孔径的关系为:

G=4πAeλ2=4πηaAphysλ2G = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi \eta_a A_{phys}}{\lambda^2}G=λ24πAe=λ24πηaAphys

其中Ae是有效孔径,Aphys是物理孔径,ηa是孔径效率(典型值0.5-0.7)。

对于N元均匀线阵,阵列因子为:

AF(θ)=∑n=0N−1anejn(kdsin⁡θ+β)AF(\theta) = \sum_{n=0}^{N-1} a_n e^{jn(kd\sin\theta + \beta)}AF(θ)=n=0N1anejn(kdsinθ+β)

其中an是激励幅度,d是单元间距,β是递进相位。通过控制β可以实现波束扫描:

θscan=arcsin⁡(βkd)\theta_{scan} = \arcsin\left(\frac{\beta}{kd}\right)θscan=arcsin(kdβ)

图13 - 片上天线收发器显微照片:显示了集成在硅片上的天线结构,通过添加寄生谐振器提高辐射效率。

片上天线的辐射效率受到硅衬底损耗的严重影响:

ηrad=RradRrad+Rloss\eta_{rad} = \frac{R_{rad}}{R_{rad} + R_{loss}}ηrad=Rrad+RlossRrad

其中Rrad是辐射电阻,Rloss是损耗电阻。对于低阻硅衬底(ρ~10Ω·cm),损耗电阻可以用以下公式估算:

Rloss=1σ⋅lwteffR_{loss} = \frac{1}{\sigma} \cdot \frac{l}{wt_{eff}}Rloss=σ1wteffl

其中σ是电导率,l是天线长度,w是宽度,teff是有效厚度(考虑趋肤深度)。

图14 - 片上天线性能:(a)测量的归一化方向图;(b)两通道间相位差,可用于DOA估计。

波束成形技术比较

图15 - SiGe收发器芯片安装比较图16 - 模拟和数字波束成形概念展示了不同的系统架构。

数字波束成形的输出可以表示为:

y(θ)=wHx=∑n=0N−1wn∗xny(\theta) = \mathbf{w}^H \mathbf{x} = \sum_{n=0}^{N-1} w_n^* x_ny(θ)=wHx=n=0N1wnxn

其中w是复数权重向量,x是接收信号向量。最优权重可以通过不同准则确定,如最大信噪比准则:

wopt=arg⁡max⁡w∣wHs∣2wHRnw\mathbf{w}_{opt} = \arg\max_{\mathbf{w}} \frac{|\mathbf{w}^H\mathbf{s}|^2}{\mathbf{w}^H\mathbf{R}_n\mathbf{w}}wopt=argwmaxwHRnwwHs2

其中s是期望信号的导向矢量,Rn是噪声协方差矩阵。

相控阵的相位误差对波束指向精度的影响可以表示为:

Δθ=λ2πdcos⁡θ0Δϕrms\Delta\theta = \frac{\lambda}{2\pi d \cos\theta_0} \Delta\phi_{rms}Δθ=2πdcosθ0λΔϕrms

其中Δφrms是相位误差的均方根值。对于5°的相位误差和λ/2的单元间距,指向误差约为0.4°。

实际传感器实例

Bosch LRR3远程雷达

图17 - Bosch LRR3传感器:展示了使用介电透镜实现高增益的设计方案。

介电透镜的焦距与折射率的关系为:

f=Rn−1f = \frac{R}{n-1}f=n1R

其中R是透镜曲率半径,n是介电常数的平方根。对于聚乙烯材料(εr≈2.3),n≈1.52。

透镜天线的增益可以近似为:

Glens=ηlens(πDλ)2G_{lens} = \eta_{lens} \left(\frac{\pi D}{\lambda}\right)^2Glens=ηlens(λπD)2

其中D是透镜直径,ηlens是透镜效率(包括溢出损耗和介质损耗)。

图18 - LRR3传感器框图:完整的系统包括77GHz收发器、19GHz参考源、PLL、基带处理等。

图19 - LRR3的双向天线图:四个接收通道产生的斜视波束用于单脉冲角度测量。相邻波束的交叉点约在-3dB处,确保了良好的角度覆盖。

中程雷达(MRR)设计

图20 - Bosch MRR传感器图21 - MRR传感器框图展示了采用平面天线阵列的设计。

平面天线阵的方向图可以用以下积分计算:

E(θ,ϕ)=∫∫apertureA(x,y)ejk(xsin⁡θcos⁡ϕ+ysin⁡θsin⁡ϕ)dxdyE(\theta,\phi) = \int\int_{aperture} A(x,y)e^{jk(x\sin\theta\cos\phi + y\sin\theta\sin\phi)}dxdyE(θ,ϕ)=apertureA(x,y)ejk(xsinθcosϕ+ysinθsinϕ)dxdy

其中A(x,y)是孔径场分布。对于均匀分布的矩形孔径:

D(θ)=sin⁡(kasin⁡θ/2)kasin⁡θ/2⋅sin⁡(kbsin⁡θ/2)kbsin⁡θ/2D(\theta) = \frac{\sin(ka\sin\theta/2)}{ka\sin\theta/2} \cdot \frac{\sin(kb\sin\theta/2)}{kb\sin\theta/2}D(θ)=kasinθ/2sin(kasinθ/2)kbsinθ/2sin(kbsinθ/2)

图22 - 前侧MRR传感器的双向天线图:显示了优化后的方向图,主瓣宽度约15°,副瓣电平低于-20dB。

片上天线演示系统

图23 - 带片上天线的雷达传感器框图图24 - 片上天线演示器展示了高度集成的解决方案。

片上天线与外部谐振器的耦合可以用耦合模理论分析:

da1dt=(jω1−γ1)a1+κa2\frac{da_1}{dt} = (j\omega_1 - \gamma_1)a_1 + \kappa a_2dtda1=(jω1γ1)a1+κa2
da2dt=(jω2−γ2)a2+κa1\frac{da_2}{dt} = (j\omega_2 - \gamma_2)a_2 + \kappa a_1dtda2=(jω2γ2)a2+κa1

其中a₁、a₂是两个谐振器的模式幅度,ω₁、ω₂是谐振频率,γ₁、γ₂是损耗率,κ是耦合系数。

强耦合条件下(κ >> γ),系统表现出模式分裂:

ω±=ω1+ω22±κ2+(ω1−ω22)2\omega_{\pm} = \frac{\omega_1 + \omega_2}{2} \pm \sqrt{\kappa^2 + \left(\frac{\omega_1 - \omega_2}{2}\right)^2}ω±=2ω1+ω2±κ2+(2ω1ω2)2

图25 - 片上天线演示器与LRR3的双向天线图比较:尽管片上天线的增益较低,但通过优化设计仍可实现可接受的性能。

系统级性能优化

动态范围与线性度要求

雷达需要同时检测近处的强反射体和远处的弱目标,这要求很高的动态范围。接收机的瞬时动态范围受限于:

DRinst=Psat−PnoisePnoise=PsatkT0BFnDR_{inst} = \frac{P_{sat} - P_{noise}}{P_{noise}} = \frac{P_{sat}}{kT_0BF_n}DRinst=PnoisePsatPnoise=kT0BFnPsat

其中Psat是饱和功率。对于典型的汽车雷达应用,需要90dB以上的动态范围。

三阶交调失真产生的虚假目标功率为:

PIM3=3Pin−2PIIP3P_{IM3} = 3P_{in} - 2P_{IIP3}PIM3=3Pin2PIIP3

其中IIP3是输入三阶截点。为了保证线性度,通常要求:

PIIP3>Pin,max+DRrequired2P_{IIP3} > P_{in,max} + \frac{DR_{required}}{2}PIIP3>Pin,max+2DRrequired

相位噪声与近距离检测

振荡器相位噪声在频偏fm处的功率谱密度L(fm)会限制近距离目标的检测能力。相位噪声产生的等效噪声功率为:

PPN(R)=Ptx+2L(fb)+Gant=Ptx+2L(2RBcT)+GantP_{PN}(R) = P_{tx} + 2L(f_b) + G_{ant} = P_{tx} + 2L\left(\frac{2RB}{cT}\right) + G_{ant}PPN(R)=Ptx+2L(fb)+Gant=Ptx+2L(cT2RB)+Gant

这创建了一个与距离相关的噪声基底,限制了强反射体附近弱目标的检测。

未来发展趋势

新的调制方案如正交频分复用(OFDM)雷达正在研究中,其模糊函数为:

χ(τ,ν)=∑n=0N−1∑m=0M−1an,mej2π(nνT−mτΔf)\chi(\tau,\nu) = \sum_{n=0}^{N-1}\sum_{m=0}^{M-1} a_{n,m}e^{j2\pi(n\nu T - m\tau \Delta f)}χ(τ,ν)=n=0N1m=0M1an,mej2π(nνTmτΔf)

其中N是子载波数,M是符号数,an,m是调制系数。OFDM雷达可以实现更灵活的波形设计和更好的干扰抑制能力。

结论

77GHz汽车雷达技术正在快速发展,从分立元件向高度集成的单片解决方案演进。硅锗BiCMOS技术提供了成本和性能的最佳平衡,新的封装技术如eWLB进一步简化了系统集成。天线系统从传统的准光学方案向数字波束成形发展,提供了更高的灵活性和性能。随着自动驾驶技术的发展,毫米波雷达将在未来的智能交通系统中发挥越来越重要的作用。

附录:数学推导

A. 雷达方程

从基本的电磁波传播理论开始,考虑一个各向同性点源,其辐射功率为Pt。在距离R处的功率密度遵循平方反比定律:

S1=Pt4πR2S_1 = \frac{P_t}{4\pi R^2}S1=4πR2Pt

实际天线具有方向性,用增益Gt表征:

S1=PtGt4πR2S_1 = \frac{P_t G_t}{4\pi R^2}S1=4πR2PtGt

目标截获的功率为:

Pintercept=S1⋅σ=PtGtσ4πR2P_{intercept} = S_1 \cdot \sigma = \frac{P_t G_t \sigma}{4\pi R^2}Pintercept=S1σ=4πR2PtGtσ

假设目标各向同性地再辐射,在雷达接收天线处的功率密度为:

S2=Pintercept4πR2=PtGtσ(4π)2R4S_2 = \frac{P_{intercept}}{4\pi R^2} = \frac{P_t G_t \sigma}{(4\pi)^2 R^4}S2=4πR2Pintercept=(4π)2R4PtGtσ

接收天线的有效孔径与增益的关系为:

Aeff=λ2Gr4πA_{eff} = \frac{\lambda^2 G_r}{4\pi}Aeff=4πλ2Gr

因此接收功率为:

Pr=S2⋅Aeff=PtGtGrλ2σ(4π)3R4P_r = S_2 \cdot A_{eff} = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4}Pr=S2Aeff=(4π)3R4PtGtGrλ2σ

考虑传播损耗La、系统损耗Ls,完整的雷达方程为:

Pr=PtGtGrλ2σ(4π)3R4LaLsP_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4 L_a L_s}Pr=(4π)3R4LaLsPtGtGrλ2σ

B. FMCW系统的完整分析

FMCW雷达的瞬时频率为:

f(t)=f0+μt,0≤t≤Tf(t) = f_0 + \mu t, \quad 0 \leq t \leq Tf(t)=f0+μt,0tT

其中μ = B/T是调频斜率。发射信号的复包络为:

stx(t)=Atexp⁡(jπμt2)s_{tx}(t) = A_t \exp\left(j\pi\mu t^2\right)stx(t)=Atexp(μt2)

考虑目标距离R(t) = R₀ + vt,往返时延为:

τ(t)=2R(t)c=τ0+2vct\tau(t) = \frac{2R(t)}{c} = \tau_0 + \frac{2v}{c}tτ(t)=c2R(t)=τ0+c2vt

接收信号为:

srx(t)=Arexp⁡(jπμ(t−τ(t))2)exp⁡(j2πf0τ(t))s_{rx}(t) = A_r \exp\left(j\pi\mu(t-\tau(t))^2\right) \exp\left(j2\pi f_0\tau(t)\right)srx(t)=Arexp(μ(tτ(t))2)exp(j2πf0τ(t))

展开并忽略高阶项:

srx(t)≈Arexp⁡(jπμt2)exp⁡(−j2π(μτ0t+f0τ0+(f0+μt)2vct))s_{rx}(t) \approx A_r \exp\left(j\pi\mu t^2\right) \exp\left(-j2\pi(\mu\tau_0 t + f_0\tau_0 + (f_0 + \mu t)\frac{2v}{c}t)\right)srx(t)Arexp(μt2)exp(j2π(μτ0t+f0τ0+(f0+μt)c2vt))

混频后的基带信号:

sIF(t)=stx∗(t)⋅srx(t)=AIFexp⁡(j2π(2R0BcTt+2vf0ct+2vBcTt2))s_{IF}(t) = s_{tx}^*(t) \cdot s_{rx}(t) = A_{IF} \exp\left(j2\pi\left(\frac{2R_0B}{cT}t + \frac{2vf_0}{c}t + \frac{2vB}{cT}t^2\right)\right)sIF(t)=stx(t)srx(t)=AIFexp(j2π(cT2R0Bt+c2vf0t+cT2vBt2))

第三项通常很小可以忽略,得到:

fIF=2R0BcT+2vf0cf_{IF} = \frac{2R_0B}{cT} + \frac{2vf_0}{c}fIF=cT2R0B+c2vf0

C. 多目标分辨与模糊函数

雷达的模糊函数定义为:

∣χ(τ,ν)∣2=∣∫−∞∞s(t)s∗(t−τ)ej2πνtdt∣2|\chi(\tau,\nu)|^2 = \left|\int_{-\infty}^{\infty} s(t)s^*(t-\tau)e^{j2\pi\nu t}dt\right|^2χ(τ,ν)2=s(t)s(tτ)ej2πνtdt2

对于线性调频信号:

∣χ(τ,ν)∣2=∣sin⁡[π(ν+μτ)T])π(ν+μτ)∣2|\chi(\tau,\nu)|^2 = \left|\frac{\sin[\pi(\nu + \mu\tau)T])}{\pi(\nu + \mu\tau)}\right|^2χ(τ,ν)2=π(ν+μτ)sin[π(ν+μτ)T])2

这表明距离-多普勒耦合,零点出现在:

ν+μτ=nT,n=±1,±2,...\nu + \mu\tau = \frac{n}{T}, \quad n = \pm1, \pm2, ...ν+μτ=Tn,n=±1,±2,...

两个目标的可分辨条件为:

∣Δτ∣>1B或∣Δν∣>1T|\Delta\tau| > \frac{1}{B} \quad \text{或} \quad |\Delta\nu| > \frac{1}{T}∣Δτ>B1∣Δν>T1

D. 角度超分辨算法

MUSIC(Multiple Signal Classification)算法通过信号子空间和噪声子空间的正交性实现超分辨:

协方差矩阵的特征分解:

R=∑i=1MλieieiH=EsΛsEsH+σ2EnEnH\mathbf{R} = \sum_{i=1}^{M} \lambda_i \mathbf{e}_i \mathbf{e}_i^H = \mathbf{E}_s \mathbf{\Lambda}_s \mathbf{E}_s^H + \sigma^2 \mathbf{E}_n \mathbf{E}_n^HR=i=1MλieieiH=EsΛsEsH+σ2EnEnH

MUSIC谱:

PMUSIC(θ)=1aH(θ)EnEnHa(θ)P_{MUSIC}(\theta) = \frac{1}{\mathbf{a}^H(\theta)\mathbf{E}_n\mathbf{E}_n^H\mathbf{a}(\theta)}PMUSIC(θ)=aH(θ)EnEnHa(θ)1

其中a(θ)是导向矢量:

a(θ)=[1,ejkdsin⁡θ,...,ejk(N−1)dsin⁡θ]T\mathbf{a}(\theta) = [1, e^{jkd\sin\theta}, ..., e^{jk(N-1)d\sin\theta}]^Ta(θ)=[1,ejkdsinθ,...,ejk(N1)dsinθ]T

E. 相位噪声的详细分析

振荡器输出可以表示为:

v(t)=Acos⁡(2πf0t+ϕ(t))v(t) = A\cos(2\pi f_0 t + \phi(t))v(t)=Acos(2πf0t+ϕ(t))

其中φ(t)是相位噪声过程。功率谱密度为:

Sϕ(f)=∑i=04hifiS_{\phi}(f) = \sum_{i=0}^{4} \frac{h_i}{f^i}Sϕ(f)=i=04fihi

对于典型的振荡器,主要项是:

  • h₀:白相位噪声
  • h₋₁:闪烁相位噪声
  • h₋₂:白频率噪声
  • h₋₃:闪烁频率噪声

相位噪声对测距精度的影响:

σR2=c2(2π)2⋅1(2B)2∫−BBSϕ(f)df\sigma_R^2 = \frac{c^2}{(2\pi)^2} \cdot \frac{1}{(2B)^2} \int_{-B}^{B} S_{\phi}(f) dfσR2=(2π)2c2(2B)21BBSϕ(f)df

F. 天线阵列的栅瓣分析

均匀线阵的阵列因子:

AF(θ)=sin⁡(Nψ/2)sin⁡(ψ/2)AF(\theta) = \frac{\sin(N\psi/2)}{\sin(\psi/2)}AF(θ)=sin(ψ/2)sin(Nψ/2)

其中ψ = kd sinθ + β。栅瓣出现的条件是:

kd(sin⁡θ−sin⁡θ0)=2nπkd(\sin\theta - \sin\theta_0) = 2n\pikd(sinθsinθ0)=2

即:

sin⁡θ=sin⁡θ0+nλd\sin\theta = \sin\theta_0 + n\frac{\lambda}{d}sinθ=sinθ0+ndλ

为避免栅瓣,需要:

d<λ1+∣sin⁡θmax∣d < \frac{\lambda}{1 + |\sin\theta_{max}|}d<1+sinθmaxλ

对于±60°的扫描范围,d < 0.54λ。

G. 非线性校正算法

频率非线性可以通过以下模型描述:

f(t)=f0+μt+∑n=2Nantnf(t) = f_0 + \mu t + \sum_{n=2}^{N} a_n t^nf(t)=f0+μt+n=2Nantn

使用延迟线鉴频器测量瞬时频率:

finst(t)=12πτdarg⁡{s(t)s∗(t−τd)}f_{inst}(t) = \frac{1}{2\pi\tau_d} \arg\{s(t)s^*(t-\tau_d)\}finst(t)=2πτd1arg{s(t)s(tτd)}

通过多项式拟合得到非线性系数,然后进行预失真补偿:

fcorrected(t)=fideal(t)−∑n=2Na^ntnf_{corrected}(t) = f_{ideal}(t) - \sum_{n=2}^{N} \hat{a}_n t^nfcorrected(t)=fideal(t)n=2Na^ntn

这种方法可以将非线性误差降低20dB以上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值