
动手学深度学习
文章平均质量分 68
动手学习深度学习笔记
少写代码少看论文多多睡觉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
CPC模型源码阅读
CPC模型源码阅读原创 2024-02-24 17:28:13 · 811 阅读 · 0 评论 -
注意力机制的快速学习
注意力机制的快速学习原创 2023-12-08 17:08:04 · 566 阅读 · 0 评论 -
【深度学习】快速制作图像标签数据集以及训练
【深度学习】快速制作图像标签数据集以及训练原创 2023-11-02 11:35:34 · 3933 阅读 · 1 评论 -
模型量化技术-INT8
模型量化技术-INT8原创 2023-09-09 17:01:31 · 1114 阅读 · 0 评论 -
模型压缩-对模型结构进行优化
模型压缩-对模型结构进行优化原创 2023-09-07 22:14:23 · 401 阅读 · 0 评论 -
【动手学深度学习】文本预处理
【动手学深度学习】文本预处理原创 2023-08-25 11:44:10 · 347 阅读 · 0 评论 -
VGG简单学习
VGG简单学习原创 2023-08-16 19:48:05 · 237 阅读 · 0 评论 -
【动手学深度学习】GPU初步认识与使用
【动手学深度学习】GPU初步认识与使用原创 2023-07-17 16:56:28 · 334 阅读 · 0 评论 -
【动手学深度学习】读写文件
【动手学深度学习】读写文件原创 2023-07-17 15:46:36 · 164 阅读 · 0 评论 -
【动手学深度学习】自定义层
【动手学深度学习】自定义层原创 2023-07-17 15:22:17 · 259 阅读 · 0 评论 -
【动手学深度学习】pytorch-参数管理
【动手学深度学习】pytorch-参数管理原创 2023-07-14 16:26:11 · 2767 阅读 · 0 评论 -
【动手学深度学习】层和块
【动手学深度学习】层和块原创 2023-07-13 16:22:47 · 506 阅读 · 0 评论 -
【动手学深度学习】Dropout-暂退法
【动手学深度学习】Dropout-暂退法原创 2023-07-13 14:54:09 · 304 阅读 · 0 评论 -
【Pytorch】神经网络模型训练套路1
【Pytorch】神经网络模型训练套路1原创 2023-04-18 22:53:19 · 224 阅读 · 0 评论 -
动手学习深度学习-三种简单损失函数
介绍三种简单的损失函数原创 2022-06-03 15:29:47 · 812 阅读 · 0 评论 -
使用深度学习框架来实现线性回归模型
直接调用d2l中的synthetic_data生成数据集二、读取数据集 调用框架中现有的API来读取数据,我们将features和labels作为API的参数传递,并通过数据迭代器指定batch_size,此外布尔值is_train表示是否希望数据迭代器对象在每一个迭代周期内打乱数据。这里使用Iter构造python迭代器,并使用Next从迭代器中获取第一项。 对于标准深度学习模型,我们可以使用框架的预定义好的层。首先定义一个模型变量Net,它是一个Squential类的实例,Sequential类将原创 2022-06-02 11:37:50 · 1108 阅读 · 0 评论 -
线性回归从零开始实现-回顾笔记
我们将从0开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器一、生成数据集 根据带有噪声的线性模型构造一个人造数据集。我们使用线性模型参数w=[2,-3.4]^T,b = 4.2 和噪声项生成数据集以及标签: 训练模型需要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新模型。我们需要定义一个函数,是的这个函数可以打乱数据集中的样本并且以小批量的方式获取数据。 定义一个data_iter函数,该函数接受批量大小、特征矩阵和标签向量作为输入,生成大小为batch_si原创 2022-06-02 00:03:18 · 275 阅读 · 0 评论 -
动手学深度学习-Fashion-MNIST数据集
动手学深度学习-Fashion-MNIST数据集一、读取数据集我们通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。%matplotlib inlineimport torchimport torchvisionfrom torch.utils import data# transforms 对图像尺寸格式进行转化from torchvision import transformsfrom d2l import torch as d2l# 使用svg来显示图片原创 2022-04-16 16:22:02 · 10040 阅读 · 0 评论 -
动手学习深度学习-softmax回归学习笔记
动手学习深度学习-softmax回归对于分类问题,有硬分类和软分类之分,一般的,我们只对样本的硬性类别感兴趣,也就是属于哪一个类别;我们也希望得到软性类别,也就是属于每一个类别的概率。一、分类问题输入是一个2x2的灰度图像,每一个图像对应四个特征x1,x2,x3,x4,每一个图像属于类别"猫",“鸡”,"狗"中的一个。接下来,对于标签,我们使用独热编码,独热编码是一个向量,他的分量和类别一样多。类别对应的分量设置为1,其他分量设置为0。标签y是一个三维向量,其中(1,0,0)对应于"猫",(0,1,原创 2022-04-06 16:25:14 · 1148 阅读 · 0 评论 -
动手学深度学习-线性回归的简单实现
动手学深度学习-线性回归的简单实现一、生成数据集二、读取数据集三、定义模型四、初始化模型参数五、定义损失函数六、定义优化算法七、训练本节介绍如何使用深度学习框架实现线性回归模型。一、生成数据集import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2ltrue_w = torch.tensor([2,-3.4])true_b = 4.2# 调用d2l包中生成数据函数,feat原创 2022-04-05 22:38:16 · 2194 阅读 · 0 评论 -
动手学习深度学习-从0开始实现线性回归
动手学习深度学习-从0开始实现线性回归一、生成数据集二、读取数据集三、初始化模型参数四、定义模型五、定义损失函数六、定义优化算法七、训练一、生成数据集根据带有噪声的线性模型构造一个人造数据集,我们将生成一个包含1000个样本的数据集,我们使用线性模型参数:w = [2,-3.4]^T、b = 4.2 和噪声生成数据集以及标签。import randomimport torchfrom d2l import torch as d2ldef synthetic_data(w,b,num_examp原创 2022-04-05 20:10:24 · 1404 阅读 · 0 评论 -
动手学深度学习-线性网络-第一节线性回归
动手学深度学习-线性网络-第一节线性回归一、线性回归1.1 线性模型1.2 损失函数1.3解析解1.4 随机梯度下降1.5 用模型进行预测1.6 矢量化加速1.7 正态分布与平方损失1.8 从线性回归到深度网络一、线性回归回归概念:回归是能为一个或者多个自变量与因变量之间关系建模的一类方法。在机器学习领域中的大多数任务通常与预测有关。预测房屋价格、预测住院时间。线性回归:基于几个简单的假设,自变量x和因变量y之间的关系是线性的,也就是y可以表示为x中元素的加权和,这里通常允许观测值的一些噪声。1.1原创 2022-04-04 23:17:14 · 1285 阅读 · 0 评论 -
03 动手学习深度学习-预备知识
03 动手学习深度学习-预备知识一、数据操作1.1 入门1.2 运算符1.3 广播机制1.4 索引与切片1.5 节省内存1.6 转换为其他python对象二、数据预处理2.1 读取数据集2.2 处理缺失值2.3 转换成张量格式三、线性代数一、数据操作 给定一个n维数组,也成为张量(tensor)。无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray,在pytorch和TensorFlow中为Tensor)都与Numpy中的ndarray相似,但是深度学习框架又比ndarray多一些重要的原创 2022-04-04 16:36:35 · 781 阅读 · 0 评论 -
02 动手学习深度学习-前言
02 动手学习深度学习-前言一、机器学习概述二、机器学习问题的组件2.1 数据2.2 模型2.3 目标函数2.4 优化算法三、各种类型的机器学习问题3.1 监督学习3.2 回归问题3.3 分类问题3.4 标记问题3.5 搜索3.6 推荐系统3.7 序列学习3.2 无监督学习3.3 与环境互动3.4 强化学习一、机器学习概述 在机器学习中,学习是一个训练模型的过程,通过这个过程,我们可以发现正确的参数集,从而使模型强制执行所需的行为。也就是使用数据训练模型。训练过程步骤:从一个随机初始化参数的模型开原创 2022-04-01 16:42:03 · 947 阅读 · 0 评论 -
01 动手学习深度学习-配置环境pytorch
01 动手学习深度学习-配置环境pytorch一、需要的配置以及准备学习环境:windows10 + anaconda + python3.7 + jupyter notebook + cuda + cudnnGPU版本:CUDA(11.6)+ cudnn(相应cuda版本)二、安装anaconda参考:https://blog.csdn.net/qq_44653420/article/details/122111441?spm=1001.2014.3001.5502检查conda的版本:c原创 2022-03-31 21:06:26 · 2560 阅读 · 1 评论