考研高等数学中值定理总结(二)

本文详细阐述了拉格朗日中值定理与柯西中值定理,并探讨了它们之间的联系与区别,特别是当特定条件满足时,柯西中值定理如何转化为拉格朗日中值定理及罗尔定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(7)拉格朗日中值定理
设f(x)满足{[a,b]上连续(a,b)内可导 \left\{ \begin{array}{c} [a,b]上连续 \\ (a,b)内可导 \\ \end{array} \right. {[a,b](a,b),则存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a.则存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} \quad. ξ(a,b),使f(ξ)=baf(b)f(a).
注:若f(a)=f(b),则f ’ (ξ)=0,成为罗尔定理。
(8)柯西中值定理
设f(x),g(x)满足{[a,b]上连续(a,b)内可导g′(x)≠0 \left\{ \begin{array}{c} [a,b]上连续 \\ (a,b)内可导 \\ g ' (x)≠0 \end{array} \right. [a,b](a,b)g(x)=0,则存在ξ∈(a,b),使f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ).则存在ξ∈(a,b),使\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f ' (ξ)}{g ' (ξ)} \quad. ξ(a,b),使g(b)g(a)f(b)f(a)=g(ξ)f(ξ).
注:[1]若g(x)为函数g(x)=x⟹f(b)−f(a)g(b)−g(a)=f(b)−f(a)b−a,成为拉格朗日中值定理.[1] 若g(x)为函数g(x)=x ⟹ \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f(b)-f(a)}{b-a} ,成为拉格朗日中值定理\quad. [1]g(x)g(x)=xg(b)g(a)f(b)f(a)=baf(b)f(a),.
[2] 所以,在柯西中值定理中,若g(x)为函数g(x)=x,成为拉格朗日中值定理,在拉格朗日中值定理中,若f(a)=f(b),成为罗尔定理。即:
柯西中值定理 (g(x)=x) ⟹ 拉格朗日中值定理 (f(a)=f(b)) ⟹罗尔定理
[3]还需要注意的是,拉格朗日中值定理能够反推出柯西中值定理吗?答案是不能
这是一个很容易犯的错误。因为很容易想到由拉格朗日中值定理存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a,g′(ξ)=g(b)−g(a)b−a,存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} ,g ' (ξ)=\frac{g(b)-g(a)}{b-a},ξ(a,b),使f(ξ)=baf(b)f(a)g(ξ)=bag(b)g(a)那么,只要f′(ξ)g′(ξ),就能约掉(b−a),得到f(b)−f(a)g(b)−g(a).只要\frac{f ' (ξ)}{g ' (ξ)} ,就能约掉(b-a),得到\frac{f(b)-f(a)}{g(b)-g(a)}.g(ξ)f(ξ)(ba),g(b)g(a)f(b)f(a).
表明上看起来似乎没有什么错误,但忽略了一个至关重要的问题:
存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a,存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} ,存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a}ξ(a,b),使f(ξ)=baf(b)f(a)ξ(a,b),使f(ξ)=baf(b)f(a),这两个ξ并不是同一个ξ(在大多数情况下不等),理解了这一点,也会对(7)拉格朗日中值定理有深一层的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值