(7)拉格朗日中值定理
设f(x)满足{[a,b]上连续(a,b)内可导
\left\{
\begin{array}{c}
[a,b]上连续 \\
(a,b)内可导 \\
\end{array}
\right.
{[a,b]上连续(a,b)内可导,则存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a.则存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} \quad. 则存在ξ∈(a,b),使f′(ξ)=b−af(b)−f(a).
注:若f(a)=f(b),则f ’ (ξ)=0,成为罗尔定理。
(8)柯西中值定理:
设f(x),g(x)满足{[a,b]上连续(a,b)内可导g′(x)≠0
\left\{
\begin{array}{c}
[a,b]上连续 \\
(a,b)内可导 \\
g ' (x)≠0
\end{array}
\right.
⎩⎨⎧[a,b]上连续(a,b)内可导g′(x)=0,则存在ξ∈(a,b),使f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ).则存在ξ∈(a,b),使\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f ' (ξ)}{g ' (ξ)} \quad. 则存在ξ∈(a,b),使g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ).
注:[1]若g(x)为函数g(x)=x⟹f(b)−f(a)g(b)−g(a)=f(b)−f(a)b−a,成为拉格朗日中值定理.[1] 若g(x)为函数g(x)=x ⟹ \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f(b)-f(a)}{b-a} ,成为拉格朗日中值定理\quad. [1]若g(x)为函数g(x)=x⟹g(b)−g(a)f(b)−f(a)=b−af(b)−f(a),成为拉格朗日中值定理.
[2] 所以,在柯西中值定理中,若g(x)为函数g(x)=x,成为拉格朗日中值定理,在拉格朗日中值定理中,若f(a)=f(b),成为罗尔定理。即:
柯西中值定理 (g(x)=x) ⟹ 拉格朗日中值定理 (f(a)=f(b)) ⟹罗尔定理
[3]还需要注意的是,拉格朗日中值定理能够反推出柯西中值定理吗?答案是不能。
这是一个很容易犯的错误。因为很容易想到由拉格朗日中值定理存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a,g′(ξ)=g(b)−g(a)b−a,存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} ,g ' (ξ)=\frac{g(b)-g(a)}{b-a},存在ξ∈(a,b),使f′(ξ)=b−af(b)−f(a),g′(ξ)=b−ag(b)−g(a),那么,只要f′(ξ)g′(ξ),就能约掉(b−a),得到f(b)−f(a)g(b)−g(a).只要\frac{f ' (ξ)}{g ' (ξ)} ,就能约掉(b-a),得到\frac{f(b)-f(a)}{g(b)-g(a)}.只要g′(ξ)f′(ξ),就能约掉(b−a),得到g(b)−g(a)f(b)−f(a).
表明上看起来似乎没有什么错误,但忽略了一个至关重要的问题:
存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a,存在ξ∈(a,b),使f′(ξ)=f(b)−f(a)b−a存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a} ,存在ξ∈(a,b),使f ' (ξ)=\frac{f(b)-f(a)}{b-a}存在ξ∈(a,b),使f′(ξ)=b−af(b)−f(a),存在ξ∈(a,b),使f′(ξ)=b−af(b)−f(a),这两个ξ并不是同一个ξ(在大多数情况下不等),理解了这一点,也会对(7)拉格朗日中值定理有深一层的理解。
考研高等数学中值定理总结(二)
最新推荐文章于 2021-07-11 18:34:51 发布