复现VAD: Vectorized Scene Representation for Efficient Autonomous Driving遇到的一些坑

本文主要讲述了如何按照install.md和prepare_dataset.md进行包安装,处理版本兼容问题,以及在VAD项目中的数据集准备、测试指令修改、模型预训练和常见错误如`AttributeError`的解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 按照install.md安装各种包,这期间会遇到很多版本不兼容的问题,自己按照requirement.txt给的版本手动升降版本即可。

  • 准备数据集部分参照prepare_dataset.md即可,注意下载Map expansion解压到nuscenes/maps目录下,以及记得下载或自己生成vad_nuscenes_infos_temporal_train.pkl和vad_nuscenes_infos_temporal_val.pkl放到nuscenes文件夹中。

  • 测试指令要修改一下符合自己本地的目录,比如:

    CUDA_VISIBLE_DEVICES=0 python tools/test.py projects/configs/VAD/VAD_base_e2e.py ckpts/VAD_base.pth --launcher none --eval bbox --tmpdir tmp
    

    记得按照train_eval.md修改VAD/projects/configs/VAD/VAD_base_e2e.pyimg_norm_cfg(用哪个文件就修改哪个)。

    记得在VAD主页的Models里下载预训练模型(VAD_base或者VAD_tiny)并放在指定文件夹。

  • 报错:
    如果使用上述测试命令出现AttributeError: 'numpy.int64' object has no attribute 'intersects'这个错误,可以参考https://github.com/hustvl/VAD/issues/29来解决。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值