LeetCode 223 矩形的面积题解

该博客讨论了如何计算两个在二维平面上相交矩形的覆盖总面积。通过分析一维情况下的相交线段长度,然后将其扩展到二维情况,得出相交矩形的面积。提供的代码示例展示了如何利用最大值和最小值来确定相交部分,并计算总面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你 二维 平面上两个 由直线构成的 矩形,请你计算并返回两个矩形覆盖的总面积。
每个矩形由其 左下 顶点和 右上 顶点坐标表示:
第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。
第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。
在这里插入图片描述

示例 1:

输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
输出:45
示例 2:

输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
输出:16

提示:

-104 <= ax1, ay1, ax2, ay2, bx1, by1, bx2, by2 <= 104

思路:二维平面上的相交矩形的面积其实就是矩形在x、y两轴上的投影的乘积
我们先分析1维上的情况
在这里插入图片描述
一共就上述5中情况,并且都可以用一个公式求出相交的线段的长度

len = max(0, min(B, D) - max(A, C));

二维的情况可以简化为两个一维的

在这里插入图片描述

class Solution {
public:
    
    int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
        long long x = max(0, min(ax2, bx2) - max(ax1 ,bx1));
        long long y = max(0, min(by2, ay2) - max(by1, ay1));
        return (ax2 - ax1) * (ay2 - ay1) + (bx2 - bx1) * (by2 - by1) - x * y;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值