【AI开发】Langchain基础

基础对话

首先先去deepseek上搞一个API key
根据deepseek官网的介绍,一个基础的chat模型应该这样写

# pip3 install langchain_openai
# python3 deepseek_v2_langchain.py
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    model='deepseek-chat', 
    openai_api_key='', 
    openai_api_base='https://api.deepseek.com',
    max_tokens=1024
)

response = llm.invoke("给我一个很土但是听起来很好养活的男孩小名", temperature=1)
print(response.content)

其中需要注意的地方有

  1. deepseek接口与openai兼容,所以调用deepseek接口可以实现
  2. 之前的langchain.llms和langchain.chat_models已经换成了langchain_openai
  3. predict和predict_messages在新版中已经被换成了invoke
  4. temperature表示唯一性,为0时一般结果不变,越大每次结果越容易变化
  5. 直接执行llm.invoke会出来完整的消息类型,如AIMessage…,我们可以通过.content或者其他属性来获取我们想要的内容

LangChain提供了几个对象,用于方便地区分不同的角色:

  • HumanMessage: 来自人类/用户的ChatMessage。
  • AIMessage: 来自AI/助手的ChatMessage。
  • SystemMessage: 来自系统的ChatMessage。
  • FunctionMessage: 来自函数调用的ChatMessage。

我们可以这样写

response = llm.invoke("Hi!")
print(response.content)

text = "做logo的公司的好名字是什么?"
message = [HumanMessage(content=text)]

response1=llm.invoke(message)
print(response1.content)

提示模板

大多数LLM应用程序不会是用户说啥,就完全传入到LLM中,那样会太麻烦。
在特定任务中,我们应该输入最核心的内容,然后LLM把该内容添加到一个更大的文本片段中,这就是提示模板prompttemplates
比如

from langchain.prompts import PromptTemplate
prompt = PromptTemplate.from_template("做{product}的公司的好名字应该是?")
prompt.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值