SPSS案例分析:非配对样本的非参数Mann-Whitney U检验

Mann-WhitneyU检验是一种非参数检验方法,用于比较两个独立样本的中位数,适用于数据非正态分布的情况。它假设数据连续且形状相似,样本间无关联。示例显示了如何在实际应用中使用该检验并得出显著性结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Mann-Whitney U检验?
Mann-Whitney U检验(曼-惠特尼U检验),又称Wilcoxon秩和检验,是由H.B.Mann和D.R.Whitney于1947年提出的,可以看作是对两均值之差的参数检验方式的T检验或相应的大样本正态检验的代用品。Mann-Whitney U检验评估了两个样本群体是否来自同一群体,并从本质上问,两个群体在数据方面是否具有相同的形状?换句话说,我们想证明这两群体是否来自于具有不同水平的相关变量的人群。因此,Mann-Whitney U检验的假设为:

⏵无效假设(H0)是两个群体相等;
⏵备选假设(H1)是这两个群体不相等。

一些研究人员将其解释为比较两个群体之间的中位数(相反,参数检验比较两个独立组之间的平均值)。在某些情况下,如果数据的形状相似(见假设),这是有效的。但应该注意的是,中位数实际上并不参与Mann-Whitney U检验统计的计算。两组可能有相同的中位数,但根据Mann-Whitney U检验却有明显的不同。

何时使用Mann-Whitney U检验
非参数检验(有时称为“无分布检验”)是在你假设你感兴趣的人群中的数据不具有正态分布时使用的。你可以认为Mann-Whitney U检验类似于未配对t检验。当你假设你的两个种群是正态分布时,你将使用这个检验,它是由它们的平均值和标准偏差(分布参数)定义的。

Mann-Whitney U检验的假设
Mann-Whitney U检验的一些关键假设具体如下:
两组之间进行比较的变量必须是连续的(在一定范围内可以取任何数字——如年龄、体重、身高或心率)。这是因为检验是基于每组观察结果的排序。
假设数据为非正态分布或偏态分布。如果你的数据是正态分布的,你应该使用非配对t检验来比较两组。
虽然两组的数据不被假定为正态,但两组的数据被假定为形状相似。
数据应该是两个随机选择的独立样本,即两组之间没有关系。如果样本是配对的(例如,来自同一组参与者的两个测量值),则应该使用成对的配对样本t检验来代替。
有效的测试需要足够的样本量。通常,每组有5个以上的观察值。

Mann-Whitney U检验示例
我们要处理的数据如下,第一列表示组号,第二列表格每个人的具体数据:

在这里插入图片描述

首先导入数据
在这里插入图片描述
点击确定
在这里插入图片描述
导入后如图
在这里插入图片描述
选择非参数检验-独立样本
在这里插入图片描述
定制分析
在这里插入图片描述
在这里设置好组和检验字段
在这里插入图片描述
最后选择曼-惠特尼U检验
在这里插入图片描述
主要结果如图所示
在这里插入图片描述
我们得到的显著性为<0.001,所以拒绝原假设(无差异),原假设发生的可能性太小了,样本前后差异性显著,有统计学意义

<think>我们首先需要明确用户意图:用户希望了解Mann-Whitney U检验的定义、用途及应用方法。因此,我们需要通过搜索获取相关信息,并按照要求组织答案。 根据要求,答案需要: - 整合检索内容,详细清晰,具有实用性和可操作性。 - 禁止引用集中在末尾(即边叙述边融入引用,但注意要求中没有要求标注引用来源,所以重点在于整合信息)。 - 避免第一人称和步骤词汇(如首先、然后)。 - 组织为多个方法或步骤,每个步骤间换行。 - 如果涉及公式和代码,按照格式要求。 - 最后添加相关问题部分。 我们计划将答案分为几个部分: 1. 定义:解释Mann-Whitney U检验是什么。 2. 用途:说明它的应用场景和目的。 3. 假设条件:列出使用该检验的前提条件。 4. 步骤:详细说明如何进行计算(包括公式)和判断。 5. 实例:给出一个简单的例子(可能包括数据示例和代码示例,例如使用Python的scipy库实现)。 6. 注意事项:可能包括与t检验的区别、适用情况等。 注意:由于要求避免步骤词汇,我们在描述步骤时可以使用其他方式,例如分点但不用“首先”等词,而是直接陈述。 我们将进行网络搜索,获取关于Mann-Whitney U检验的权威定义、步骤等信息。 搜索关键词:Mann-Whitney U test definition, application, usage, statistics 根据搜索,我们得知: - Mann-Whitney U检验,也称为Wilcoxon秩和检验,是一种非参数检验,用于比较两个独立样本是否来自同一总体。 - 它适用于当数据不满足正态分布或样本量较小的情况。 - 原假设是两个独立样本来自相同的总体(或两个总体的分布相同)。 - 计算步骤:将两组数据合并排序,计算每组的秩和,然后计算U统计量。 公式: U统计量的计算公式: $$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$ $$U_2 = R_2 - \frac{n_2(n_2+1)}{2}$$ 其中,$R_1$和$R_2$分别是样本1和样本2的秩和,$n_1$和$n_2$是两个样本的大小。实际使用的U统计量是$U_1$和$U_2$中的较小者。 然后与临界值比较或计算p值进行判断。 在编程实现中,我们可以使用scipy.stats.mannwhitneyu。 下面开始组织答案:</think>### Mann-Whitney U检验详解 #### **定义** Mann-Whitney U检验(又称Wilcoxon秩和检验)是一种**非参数统计方法**,用于判断两个独立样本是否来自同一分布。通过比较两组数据的秩和而原始数值,检验零假设$H_0$:两样本分布相同。其核心统计量为$U$值: $$U = R_1 - \frac{n_1(n_1+1)}{2}$$ 其中$R_1$为样本1的秩和,$n_1$为样本1的观测数。 #### **用途** - 比较两个独立组别的中位数差异(如对照组 vs 实验组) - 处理正态分布数据或有序分类数据 - 适用于小样本($n<30$)或方差齐性不满足的情况 - 替代独立样本t检验非参数方案 #### **应用步骤** **数据准备** 确保两组数据独立且至少为有序尺度(如满意度评分、反应时间)。 **计算U统计量** 1. 合并两组数据并升序排列 2. 为每个观测值分配秩(相同数值取平均秩) 3. 计算样本1的秩和$R_1$ 4. 代入公式: $$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$ $$U_2 = n_1n_2 - U_1$$ 取$U = \min(U_1, U_2)$ **假设检验** - $H_0$:两样本分布相同 - $H_1$:两样本分布不同(或某一组显著更大/更小) - 查U分布表或软件计算p值($n>20$时可用正态近似) **效应量计算** 常用Cliff's delta: $$\delta = \frac{U_1 - U_2}{n_1n_2}$$ 值域$[-1,1]$,$|\delta|>0.147$表示显著效应。 #### **Python代码示例** ```python from scipy.stats import mannwhitneyu # 示例数据:对照组和实验组 control = [23, 29, 31, 40, 45] treatment = [28, 34, 48, 55, 60] # 执行检验 statistic, p_value = mannwhitneyu(control, treatment, alternative='two-sided') print(f"U统计量: {statistic:.2f}, p值: {p_value:.4f}") # 效应量计算 n1, n2 = len(control), len(treatment) delta = (2*statistic/(n1*n2)) - 1 # Cliff's delta近似 print(f"效应量δ: {delta:.3f}") ``` #### **注意事项** - 样本独立性假设必须满足 - 对极端值稳健,但结(ties)过多需校正 -样本时使用连续性校正(`continuity=True`) - 报告结果需包含U值、p值和效应量 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白小白的学习笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值