大数据内容分享(六):Hadoop统一资源管理和调度平台 YARN

目录

Yarn 概述

YARN 架构组件

YARN容错性

YARN运行流程

YARN 调度

YARN 部署


Yarn 概述

Apache Yarn(Yet Another Resource Negotiator的缩写)是hadoop集群资源管理器系统,Yarn从hadoop 2引入,最初是为了改善MapReduce的实现,但是它具有通用性,同样执行其他分布式计算模式。

Yarn特点

  • 支持非mapreduce应用的需求

  • 可扩展性

  • 提高资源是用率

  • 用户敏捷性

  • 可以通过搭建为高可用

YARN 架构组件

Yarn从整体上还是属于master/slave模型,主要依赖于三个组件来实现功能。

  • 第一个就是ResourceManager,是集群资源的仲裁者,它包括两部分:一个是可插拔式的调度Scheduler,一个是ApplicationManager,用于管理集群中的用户作业。

  • 第二个是每个节点上的 NodeManager,管理该节点上的用户作业和工作流,也会不断发送自己Container使用情况给ResourceManager。

  • 第三个组件是ApplicationMaster,用户作业生命周期的管理者它的主要功能就是向ResourceManager(全局的)申请计算资源(Containers)并且和NodeManager交互来执行和监控具体的task。

架构图如下:

9063506a0b544006981d837a4f2d6248.png

ResourceManager(RM)

RM是一个全局的资源管理器,管理整个集群的计算资源,并将这些资源分配给应用程序。包括:

  • 与客户端交互,处理来自客户端的请求

  • 启动和管理ApplicationMaster,并在它运行失败时重新启动它

  • 管理NodeManager ,接收来自NodeManager 的资源汇报信息,并向NodeManager下达管理指令

  • 资源管理与调度,接收来自ApplicationMaster 的资源申请请求,并为之分配资源

RM关键配置参数

最小容器内存:

yarn.scheduler.minimum-allocation-mb

容器内存增量:

yarn.scheduler.increment-allocation-mb

最大容器内存:

yarn.scheduler.maximum-allocation-mb

最小容器虚拟 CPU 内核数量:

yarn.scheduler.minimum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值